Both gradual and sharp decrease in organic and carbonate carbon isotope values were detected across the Permian-Triassic boundary in the Meishan section, Changxing, Zhejiang Province, China. The gradual decrease in or...Both gradual and sharp decrease in organic and carbonate carbon isotope values were detected across the Permian-Triassic boundary in the Meishan section, Changxing, Zhejiang Province, China. The gradual decrease in organic carbon isotope values started at the bottom of Bed 23, coinciding with the strong oscillations of total organic carbon (TOC) contents, indicates increasing fluxes from carbonate to organic carbon reservoir during this interval. A 2.3‰ sharp drop of inorganic carbon isotope values occurred at the uppermost part of Bed 24e. A 3.7‰ sharp drop of organic carbon isotope values occurred in Bed 26. The dramatic drop of inorganic carbon isotope value of 8‰ reported previously is not confirmed from the unweathered carbonate samples in Bed 27. The large-scale fluctuation of organic carbon isotope values in the Yinkeng Formation reflects different extent of mixing of marine and terrestrial organic matters. The gradual depletion and subsequent sharp drop of carbon isotopes near the展开更多
The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic. About 95% species, 82% genera, and more than half families became extinct, constituting the sole macro-mass extinction in geol...The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic. About 95% species, 82% genera, and more than half families became extinct, constituting the sole macro-mass extinction in geological history. This event not only caused the great extinction but also destroyed the 200 Myr-long Paleozoic marine ecosystem, prompted its transition to Mesozoic ecosystem, and induced coal gap on land as well as reef gap and chert gap in ocean. The biotic crisis during the Paleozoic-Mesozoic transition was a long process of co-evolution between geospheres and biosphere. The event sequence at the Permian-Triassic boundary (PTB) reveals two-episodic pattern of rapidly deteriorating global changes and biotic mass ex- tinction and the intimate relationship between them. The severe global changes coupling multiple geospheres may have affect- ed the Pangea integration on the Earth's surface spheres, which include: the Pangea integration→enhanced mountain height and basin depth, changes of wind and ocean current systems; enhanced ocean basin depth→the greatest Phanerozoic regression at PTB, disappearance of epeiric seas and subsequent rapid transgression; the Pangea integration→thermal isolation effect of continental lithosphere and decrease of mid-ocean ridges→development of continental volcanism; two-episode volcanism causing LIPs of the Emeishan Basalt and the Siberian Trap (25%251 Ma)→global warming and mass extinction; continental aridification and replacement of monsoon system by latitudinal wind system→destruction of vegetation; enhanced weathering and CH4 emission→negative excursion of δ^13C; mantle plume→crust doming→regression; possible relation between the Illawarra magnetic reversal and the PTB extinction, and so on. Mantle plume produced the Late Permian LIPs and mantle convection may have caused the process of the Pangea integration. Subduction, delamination, and accumulation of the earth's cool lithospheric material at the "D" layer of CMB started mantl展开更多
Spherical microfossils are present in the Hindeodus parvus zone of the Lower Triassic in Ziyun,Guizhou Province. They generally range from 0.15 to 0.30 mm across,with micritic wall and filled by micro-sparry calcites,...Spherical microfossils are present in the Hindeodus parvus zone of the Lower Triassic in Ziyun,Guizhou Province. They generally range from 0.15 to 0.30 mm across,with micritic wall and filled by micro-sparry calcites,and are evenly scattered in micritic matrix. Their abundance makes the rock as-signed to microbialites. The accompanied organisms include ostracods and algal mat,but no gastro-pods or bivalves. Presence of small (<7 μm) pyrite framboids indicates that this bed formed in anoxic conditions. In some sections,this bed is overlain and underlain by tidal-flat micritic limestone with microgastropods and small burrows. Occurrence only in deposits on reef top indicates that the micro-bial organism was benthic,and needed sunlight in life. The size of the microbial fossil exceeds that of any bacteria or cyanobacteria. Thus,it does not belong to these two phyla. It may belong to lower green algae,and is assigned to a new species in a new genus,Ziyunosphaeridium sinensis gen. et sp. nov. Up to now,the rocks described as microbialites from the Permian-Triassic transition include six types: (1) porous micritic limestone such as that descried from Japan by Sano and Nakashima (1997),(2) limestone with rich globular microfossils such as that described from the Nanpanjiang Basin in China by Lehrmann (1999),(3) dendroidal limestone such as that described from the vicinity of Chongqing by Kershaw et al. (1999),(4) spherical microbial limestone adapted to anoxic environments described from Ziyun,Guizhou reported in this paper,(5) limestone with cyanobacterial fossils such as that described by Wang et al. (2005),and (6) stromatolites. All these microbialites are not reefs in the proper sense,and the argument that Permian reef ecosystems extended into the Mesozoic is incorrect.展开更多
This paper discusses the clayrocks widespread at the Permian-Triassic boundary, which are mostly of volcanic origin. Volcanogenetic textures, structures and minerals such as high-temperature quartz are found in clayro...This paper discusses the clayrocks widespread at the Permian-Triassic boundary, which are mostly of volcanic origin. Volcanogenetic textures, structures and minerals such as high-temperature quartz are found in clayrocks at the Permian-Triassic boundary in many places. Thousands of microspherules have been collected from the Boundary clayrocks, many of which exhibit the typical features of the process from melting to cooling and solidification. indicating that they were formed by volcanic eruption or extraterrestrial impact. Volcanic effects on the Permian-Triassic mass extinction may be reflected in conodonts, algae and ammonoids. The Boundary clayrocks are found in many Permian-Triassic sections along the coast of Tethys. Their orighin remains to be studied.展开更多
Inertinite maceral compositions of the Late Permian coals from three sections in the terrestrial and paralic settings of eastern Yunnan are analyzed in order to reveal the paleo-fire events and the atmospheric oxygen ...Inertinite maceral compositions of the Late Permian coals from three sections in the terrestrial and paralic settings of eastern Yunnan are analyzed in order to reveal the paleo-fire events and the atmospheric oxygen levels in the latest Permian. Although the macerals in the studied sections are generally dominated by vitrinite, the inertinite group makes up a considerable proportion. Its content increases upward from the beginning of the Late Permian to the coal seam near the Permian- Triassic boundary. Based on the microscopic features and the prevailing theory that inertinite is largely a by-product of paleo-fires, we suggest that the increasing upward trend of the inertinite abundance in the latest Permian could imply that the Late Permian peatland had suffered from frequent wildfires. Since ignition and burning depend on sufficient oxygen, a model-based calculation suggests that the 02 levels near the Wuchiapingian/Changhsingian boundary and the Permian-Triassic boundary are 27% and 28% respectively. This output adds supports to other discoveries made in the temporal marine and terrestrial sediments, and challenges the theories advocating hypoxia as a mechanism for the PermianTriassic boundary crisis.展开更多
Series of large conodont samples with 20 species and 3 similar species in 3 genera were collected from the Permian-Triassic (P-T) boundary sequence in a shallow carbonate facies at Yangou (沿沟), Leping (乐平) C...Series of large conodont samples with 20 species and 3 similar species in 3 genera were collected from the Permian-Triassic (P-T) boundary sequence in a shallow carbonate facies at Yangou (沿沟), Leping (乐平) County, Jiangxi (江西) Province, South China. On the basis of the distributions of the identified species, seven conodont zones have been recognized in ascending order as follows, Neogondolella changxingensis zone, Neogondolella yini zone, Hindeodus changxingensis zone, Neogon- dolella taylorae zone, Hindeodus parvus zone, Isarcicella staeschei zone, and IsarciceUa isarcica zone. The successive occurrences of Hindeodus changxingensis, NeogondoleUa taylorae and Hindeodus parvus serve as proxies for defining the P-T biostratigraphy boundary at the base of Sub-bed 21-4 of Bed 21 in the Yangou Section. Correlations with the Meishan Section are also discussed in terms of conodont bio-stratigraphy. Three successive conodont faunal assemblages are grouped through the P-T transitional interval to examine the evolution of conodonts across the great transitional event.展开更多
The stratigraphic sequence of calcimicrobialite facies at the Permian-Triassic (P/Tr) boundary has well recorded the biotic and environmental transition across the end-Permian catastrophic events. The biostratigraphy,...The stratigraphic sequence of calcimicrobialite facies at the Permian-Triassic (P/Tr) boundary has well recorded the biotic and environmental transition across the end-Permian catastrophic events. The biostratigraphy, microfacies, carbon isotopes, and fossil records across the P/Tr boundary have been studied at the Kangjiaping Section in Cili County, Hunan Province. Three biostratigraphic zones, Palaeofusulina-Colaniella Zone, Hindeodus parvus Zone, and Isarcicella staeschei Zone, are identified. The excursion of δ13Ccarb exhibits a sharp negative shift in the calcimicrobialite at the P/Tr boundary, which is roughly accordant with the abrupt bioclastic decline. In addition, five types of microfacies are recognized, including algal-foraminifer bioclastic limestone, algal-laminated calcimicrobial limestone, oolitic grainstone, vermiculate limestone, and intraclastic wackstone. The results indicate that the changeover of ecosystem from metazoan reef to calcimicrobialite in Cili is a classic case of marine ecological evolution during the Paleozoic-Mesozoic transition.展开更多
Three third-order sequences and about one hundred high-frequency cycles or Milankovitchcycles within the Late Permian Changxingian to Early Triassic Griesbachian are identified in theMeishan Section of Changxing, Zhej...Three third-order sequences and about one hundred high-frequency cycles or Milankovitchcycles within the Late Permian Changxingian to Early Triassic Griesbachian are identified in theMeishan Section of Changxing, Zhejiang Province, southern China, the candidate stratotype sec-tion of the global Permo-Triassic boundary, based on a detailed study of the biological,ecological and high-resolution allochthonous cyclic events, microfacies and depositional systems.Furthermore, the stacking pattern of the depositional systems across various Changxingian andGriesbachian sedimentary facies of the Lower Yangtze and the sequence stratigraphic frameworkare outlined with the Meishan section as the principal section. In this paper the habitat types offossil biota are applied to semiquantitative palaeobathymetry and the study of relative sea levelchanges.展开更多
基金This work was supported by the Major Basic Research Projects of the Ministry of Science Technology of China (Grant No. G2000077700) Opening Laboratory of Palaeobiology and Stratigraphy of Nanjing Institute of Geology and Palaeontology, the Chinese
文摘Both gradual and sharp decrease in organic and carbonate carbon isotope values were detected across the Permian-Triassic boundary in the Meishan section, Changxing, Zhejiang Province, China. The gradual decrease in organic carbon isotope values started at the bottom of Bed 23, coinciding with the strong oscillations of total organic carbon (TOC) contents, indicates increasing fluxes from carbonate to organic carbon reservoir during this interval. A 2.3‰ sharp drop of inorganic carbon isotope values occurred at the uppermost part of Bed 24e. A 3.7‰ sharp drop of organic carbon isotope values occurred in Bed 26. The dramatic drop of inorganic carbon isotope value of 8‰ reported previously is not confirmed from the unweathered carbonate samples in Bed 27. The large-scale fluctuation of organic carbon isotope values in the Yinkeng Formation reflects different extent of mixing of marine and terrestrial organic matters. The gradual depletion and subsequent sharp drop of carbon isotopes near the
基金supported by the National Basic Research Program of China(Grant No.2011CB808800)the 111 Project(Grant No.B08030)+1 种基金the National Natural Science Foundation of China(Grant Nos.40621002,40830212&40921062)the Fundamental Research Funds for the Central Universities(CUG130407)
文摘The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic. About 95% species, 82% genera, and more than half families became extinct, constituting the sole macro-mass extinction in geological history. This event not only caused the great extinction but also destroyed the 200 Myr-long Paleozoic marine ecosystem, prompted its transition to Mesozoic ecosystem, and induced coal gap on land as well as reef gap and chert gap in ocean. The biotic crisis during the Paleozoic-Mesozoic transition was a long process of co-evolution between geospheres and biosphere. The event sequence at the Permian-Triassic boundary (PTB) reveals two-episodic pattern of rapidly deteriorating global changes and biotic mass ex- tinction and the intimate relationship between them. The severe global changes coupling multiple geospheres may have affect- ed the Pangea integration on the Earth's surface spheres, which include: the Pangea integration→enhanced mountain height and basin depth, changes of wind and ocean current systems; enhanced ocean basin depth→the greatest Phanerozoic regression at PTB, disappearance of epeiric seas and subsequent rapid transgression; the Pangea integration→thermal isolation effect of continental lithosphere and decrease of mid-ocean ridges→development of continental volcanism; two-episode volcanism causing LIPs of the Emeishan Basalt and the Siberian Trap (25%251 Ma)→global warming and mass extinction; continental aridification and replacement of monsoon system by latitudinal wind system→destruction of vegetation; enhanced weathering and CH4 emission→negative excursion of δ^13C; mantle plume→crust doming→regression; possible relation between the Illawarra magnetic reversal and the PTB extinction, and so on. Mantle plume produced the Late Permian LIPs and mantle convection may have caused the process of the Pangea integration. Subduction, delamination, and accumulation of the earth's cool lithospheric material at the "D" layer of CMB started mantl
基金Supported by the National Natural Science Foundation of China (Grant No. 40472015)the State Key Laboratory of Modern Paleontology and Stratigraphy (Grant No. 053102)as well as the Key Laboratory for Minerals and Resources, the Chinese Academy of Sciences
文摘Spherical microfossils are present in the Hindeodus parvus zone of the Lower Triassic in Ziyun,Guizhou Province. They generally range from 0.15 to 0.30 mm across,with micritic wall and filled by micro-sparry calcites,and are evenly scattered in micritic matrix. Their abundance makes the rock as-signed to microbialites. The accompanied organisms include ostracods and algal mat,but no gastro-pods or bivalves. Presence of small (<7 μm) pyrite framboids indicates that this bed formed in anoxic conditions. In some sections,this bed is overlain and underlain by tidal-flat micritic limestone with microgastropods and small burrows. Occurrence only in deposits on reef top indicates that the micro-bial organism was benthic,and needed sunlight in life. The size of the microbial fossil exceeds that of any bacteria or cyanobacteria. Thus,it does not belong to these two phyla. It may belong to lower green algae,and is assigned to a new species in a new genus,Ziyunosphaeridium sinensis gen. et sp. nov. Up to now,the rocks described as microbialites from the Permian-Triassic transition include six types: (1) porous micritic limestone such as that descried from Japan by Sano and Nakashima (1997),(2) limestone with rich globular microfossils such as that described from the Nanpanjiang Basin in China by Lehrmann (1999),(3) dendroidal limestone such as that described from the vicinity of Chongqing by Kershaw et al. (1999),(4) spherical microbial limestone adapted to anoxic environments described from Ziyun,Guizhou reported in this paper,(5) limestone with cyanobacterial fossils such as that described by Wang et al. (2005),and (6) stromatolites. All these microbialites are not reefs in the proper sense,and the argument that Permian reef ecosystems extended into the Mesozoic is incorrect.
文摘This paper discusses the clayrocks widespread at the Permian-Triassic boundary, which are mostly of volcanic origin. Volcanogenetic textures, structures and minerals such as high-temperature quartz are found in clayrocks at the Permian-Triassic boundary in many places. Thousands of microspherules have been collected from the Boundary clayrocks, many of which exhibit the typical features of the process from melting to cooling and solidification. indicating that they were formed by volcanic eruption or extraterrestrial impact. Volcanic effects on the Permian-Triassic mass extinction may be reflected in conodonts, algae and ammonoids. The Boundary clayrocks are found in many Permian-Triassic sections along the coast of Tethys. Their orighin remains to be studied.
基金supported by the National Natural Science Foundation of China(41030213)the Major National S&T Program of China(2011ZX05033-002 and 2011ZX05009-002)the Fundamental Research Funds for the Central Universities in China(2010YD09)
文摘Inertinite maceral compositions of the Late Permian coals from three sections in the terrestrial and paralic settings of eastern Yunnan are analyzed in order to reveal the paleo-fire events and the atmospheric oxygen levels in the latest Permian. Although the macerals in the studied sections are generally dominated by vitrinite, the inertinite group makes up a considerable proportion. Its content increases upward from the beginning of the Late Permian to the coal seam near the Permian- Triassic boundary. Based on the microscopic features and the prevailing theory that inertinite is largely a by-product of paleo-fires, we suggest that the increasing upward trend of the inertinite abundance in the latest Permian could imply that the Late Permian peatland had suffered from frequent wildfires. Since ignition and burning depend on sufficient oxygen, a model-based calculation suggests that the 02 levels near the Wuchiapingian/Changhsingian boundary and the Permian-Triassic boundary are 27% and 28% respectively. This output adds supports to other discoveries made in the temporal marine and terrestrial sediments, and challenges the theories advocating hypoxia as a mechanism for the PermianTriassic boundary crisis.
基金supported by the National Natural Science Foundation of China(Nos.40830212,40921062)the China Postdoctoral Science Foundation(No.20080430147)+1 种基金the Program of Key Laboratory of Biogeology and the Environmental Geology of Ministry of Education,China University of Geosciences(No.BGEG0802)the Science Project of Education Department in Jiangxi Province(No.GJJ10623)
文摘Series of large conodont samples with 20 species and 3 similar species in 3 genera were collected from the Permian-Triassic (P-T) boundary sequence in a shallow carbonate facies at Yangou (沿沟), Leping (乐平) County, Jiangxi (江西) Province, South China. On the basis of the distributions of the identified species, seven conodont zones have been recognized in ascending order as follows, Neogondolella changxingensis zone, Neogondolella yini zone, Hindeodus changxingensis zone, Neogon- dolella taylorae zone, Hindeodus parvus zone, Isarcicella staeschei zone, and IsarciceUa isarcica zone. The successive occurrences of Hindeodus changxingensis, NeogondoleUa taylorae and Hindeodus parvus serve as proxies for defining the P-T biostratigraphy boundary at the base of Sub-bed 21-4 of Bed 21 in the Yangou Section. Correlations with the Meishan Section are also discussed in terms of conodont bio-stratigraphy. Three successive conodont faunal assemblages are grouped through the P-T transitional interval to examine the evolution of conodonts across the great transitional event.
基金National Natural Science Foundation of China (Grant Nos. 40830212, 40621002, 40730209)National Basic Research Program of China (Grant No. 2006CB80640)
文摘The stratigraphic sequence of calcimicrobialite facies at the Permian-Triassic (P/Tr) boundary has well recorded the biotic and environmental transition across the end-Permian catastrophic events. The biostratigraphy, microfacies, carbon isotopes, and fossil records across the P/Tr boundary have been studied at the Kangjiaping Section in Cili County, Hunan Province. Three biostratigraphic zones, Palaeofusulina-Colaniella Zone, Hindeodus parvus Zone, and Isarcicella staeschei Zone, are identified. The excursion of δ13Ccarb exhibits a sharp negative shift in the calcimicrobialite at the P/Tr boundary, which is roughly accordant with the abrupt bioclastic decline. In addition, five types of microfacies are recognized, including algal-foraminifer bioclastic limestone, algal-laminated calcimicrobial limestone, oolitic grainstone, vermiculate limestone, and intraclastic wackstone. The results indicate that the changeover of ecosystem from metazoan reef to calcimicrobialite in Cili is a classic case of marine ecological evolution during the Paleozoic-Mesozoic transition.
文摘Three third-order sequences and about one hundred high-frequency cycles or Milankovitchcycles within the Late Permian Changxingian to Early Triassic Griesbachian are identified in theMeishan Section of Changxing, Zhejiang Province, southern China, the candidate stratotype sec-tion of the global Permo-Triassic boundary, based on a detailed study of the biological,ecological and high-resolution allochthonous cyclic events, microfacies and depositional systems.Furthermore, the stacking pattern of the depositional systems across various Changxingian andGriesbachian sedimentary facies of the Lower Yangtze and the sequence stratigraphic frameworkare outlined with the Meishan section as the principal section. In this paper the habitat types offossil biota are applied to semiquantitative palaeobathymetry and the study of relative sea levelchanges.