提出一种考虑周期性约束的多材料结构稳态热传导拓扑优化设计方法。针对多材料结构,提出基于有序有理近似材料属性模型(ordered rational approximation of material properties,Ordered-RAMP)的多材料插值模型。以结构散热弱度最小化...提出一种考虑周期性约束的多材料结构稳态热传导拓扑优化设计方法。针对多材料结构,提出基于有序有理近似材料属性模型(ordered rational approximation of material properties,Ordered-RAMP)的多材料插值模型。以结构散热弱度最小化为目标函数,体积为约束条件,将设计区域划分为有限个相同的子多材料区域。通过重新分配单元散热弱度基值,实现周期性几何约束,借助优化准则法推导设计变量的迭代格式。通过典型2D与3D数值算例,分析不同子区域个数对宏观结构与微观子区域多材料拓扑构型的影响。结果表明:所提方法可实现面向多材料结构的周期性微观构型设计,且各材料分布合理边界清晰,具有良好的稳健性;当子区域个数不同时,均可得到具有周期性的拓扑构型,且所获拓扑形式具有差异性。展开更多
The current methods for designing periodic orbits in the elliptic restricted three-body problem(ERTBP)have the disadvantages of targeting limited orbits and ergodic searches and considering only symmetric orbits.A uni...The current methods for designing periodic orbits in the elliptic restricted three-body problem(ERTBP)have the disadvantages of targeting limited orbits and ergodic searches and considering only symmetric orbits.A universal method for designing periodic orbits is proposed in this paper.First,the homotopy classes of orbits are structured based on their topological structures.Second,a dynamic model based on homotopy classes,ranging from the circular restricted three-body problem(CRTBP)to the ERTBP,can be built using the homotopy method.Third,a multi-and a single-period orbit were selected based on the resonance ratios.Finally,the corresponding orbit in the ERTBP was computed by modifying the initial condition of the orbit in the CRTBP.This method,without an ergodic search,can extend to any orbit,including an asymmetric orbit in the CRTBP,to the ERTBP model,and the two orbits are of the same homotopy class.Examples of the Earth–Moon ERTBP are presented to verify the efficiency of this method.展开更多
Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal pos...Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal possessing sixfold rotational symmetry and hosting higher-order topological hinge Fermi arc states, which is irradiated by circularly polarized light. Our findings reveal that circularly polarized light splits each Dirac node into a pair of Weyl nodes due to the breaking of time-reversal symmetry, resulting in the realization of the Weyl semimetal phase. This Weyl semimetal phase exhibits rich boundary states, including two-dimensional surface Fermi arc states and hinge Fermi arc states confined to six hinges.Furthermore, by adjusting the incident direction of the circularly polarized light, we can control the degree of tilt of the resulting Weyl cones, enabling the realization of different types of Weyl semimetals.展开更多
In this paper,we investigate the time-periodic solution to a coupled compressible Navier–Stokes/Allen–Cahn system which describes the motion of a mixture of two viscous compressible fluids with a time periodic exter...In this paper,we investigate the time-periodic solution to a coupled compressible Navier–Stokes/Allen–Cahn system which describes the motion of a mixture of two viscous compressible fluids with a time periodic external force in a periodic domain in R^N.The existence of the time-periodic solution to the system is established by using an approach of parabolic regularization and combining with the topology degree theory,and then the uniqueness of the period solution is obtained under some smallness and symmetry assumptions on the external force.展开更多
This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of th...This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.展开更多
文摘提出一种考虑周期性约束的多材料结构稳态热传导拓扑优化设计方法。针对多材料结构,提出基于有序有理近似材料属性模型(ordered rational approximation of material properties,Ordered-RAMP)的多材料插值模型。以结构散热弱度最小化为目标函数,体积为约束条件,将设计区域划分为有限个相同的子多材料区域。通过重新分配单元散热弱度基值,实现周期性几何约束,借助优化准则法推导设计变量的迭代格式。通过典型2D与3D数值算例,分析不同子区域个数对宏观结构与微观子区域多材料拓扑构型的影响。结果表明:所提方法可实现面向多材料结构的周期性微观构型设计,且各材料分布合理边界清晰,具有良好的稳健性;当子区域个数不同时,均可得到具有周期性的拓扑构型,且所获拓扑形式具有差异性。
文摘The current methods for designing periodic orbits in the elliptic restricted three-body problem(ERTBP)have the disadvantages of targeting limited orbits and ergodic searches and considering only symmetric orbits.A universal method for designing periodic orbits is proposed in this paper.First,the homotopy classes of orbits are structured based on their topological structures.Second,a dynamic model based on homotopy classes,ranging from the circular restricted three-body problem(CRTBP)to the ERTBP,can be built using the homotopy method.Third,a multi-and a single-period orbit were selected based on the resonance ratios.Finally,the corresponding orbit in the ERTBP was computed by modifying the initial condition of the orbit in the CRTBP.This method,without an ergodic search,can extend to any orbit,including an asymmetric orbit in the CRTBP,to the ERTBP model,and the two orbits are of the same homotopy class.Examples of the Earth–Moon ERTBP are presented to verify the efficiency of this method.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12074108 and 12347101)+3 种基金the Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-MSX0568)the Fundamental Research Funds for the Central Universities (Grant No. 2023CDJXY048)the Natural Science Foundation of Jiangsu Province(Grant No. BK20230066)the Jiangsu Shuang Chuang Project (Grant No. JSSCTD202209)。
文摘Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal possessing sixfold rotational symmetry and hosting higher-order topological hinge Fermi arc states, which is irradiated by circularly polarized light. Our findings reveal that circularly polarized light splits each Dirac node into a pair of Weyl nodes due to the breaking of time-reversal symmetry, resulting in the realization of the Weyl semimetal phase. This Weyl semimetal phase exhibits rich boundary states, including two-dimensional surface Fermi arc states and hinge Fermi arc states confined to six hinges.Furthermore, by adjusting the incident direction of the circularly polarized light, we can control the degree of tilt of the resulting Weyl cones, enabling the realization of different types of Weyl semimetals.
基金Supported by the NNSF of China(Grant Nos.11671367 and 11801133)the Natural Science Foundation of Henan Province(Grant No.152300410227)the Key Research Projects of Henan Higher Education Institutions(Grant No.18A110038)。
文摘In this paper,we investigate the time-periodic solution to a coupled compressible Navier–Stokes/Allen–Cahn system which describes the motion of a mixture of two viscous compressible fluids with a time periodic external force in a periodic domain in R^N.The existence of the time-periodic solution to the system is established by using an approach of parabolic regularization and combining with the topology degree theory,and then the uniqueness of the period solution is obtained under some smallness and symmetry assumptions on the external force.
基金supported by the Program for New Century Excellent Talents in University of the Ministry of Education(NCET-13-0804)NSFC(11471127)+3 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(2015A030306029)The Excellent Young Teachers Program of Guangdong Province(HS2015007)Pearl River S&T Nova Program of Guangzhou(2013J2200064)supported by the General Research Fund of Hong Kong,City U 104511
文摘This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.