This paper presented a new Floquet analysis used to calculate the radiation for 1-D and 2-D coupled periodic antenna systems. In this way, an accurate evaluation of mutual coupling can be proven by using a new mutual ...This paper presented a new Floquet analysis used to calculate the radiation for 1-D and 2-D coupled periodic antenna systems. In this way, an accurate evaluation of mutual coupling can be proven by using a new mutual interaction expression that was based on Fourier analysis. Then, this work indicated how Floquet analysis can be used to study a finite array with uniform amplitude and linear phase distribution in both x and y directions. To modelize the proposed structures, two formulations were given in a spectral and spatial domain, where the Moment (MoM) method combined with a generalized equivalent circuit (GEC) method was applied. Radiation pattern of coupled periodic antenna was shown by varying many parameters, such as frequencies, distance and Floquet states. The 3-D radiation beam of the coupled antenna array was analyzed and compared in several steering angles θs and coupling values dx. The simulation of this structure demonstrated that directivity decreased at higher coupling values. The secondary lobs in the antenna radiation pattern affected the main lobe gain by energy dispersal and considerable increasing of side lobe level (SLL) may be achieved. Therefore, the sweeping of the radiation beam in several steering directions affected the electromagnetic performance of the antenna system: the directivity at the steering angle θs = π⁄3 was more damaged and had 19.99 dB while the second at θs = 0 had about 35.11 dB. This parametric study of coupled structure used to concept smart periodic antenna with sweeping radiation beam.展开更多
In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests a...In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests and been employed for many wideband applications. A Printed Log-Periodic Dipole Antenna (PLPDA) with multiple notched bands is proposed for Ultra-WideBand (UWB) applications. An antenna with the notched frequencies of 1.03 GHz, 1.28 GHz, 1.72 GHz, 2.24 GHz and 2.51 GHz is designed, fabricated, and measured. An antenna model was established on the substrate of FR4 and feed by a stripline. The simulation results show that the antenna can achieve an impendence wide bandwidth from 0.89 to 2.58 GHz with return loss less than -10 dB and exhibit stable antenna gain. Furthermore, the measurement result is better consistent with simulation result.展开更多
文摘This paper presented a new Floquet analysis used to calculate the radiation for 1-D and 2-D coupled periodic antenna systems. In this way, an accurate evaluation of mutual coupling can be proven by using a new mutual interaction expression that was based on Fourier analysis. Then, this work indicated how Floquet analysis can be used to study a finite array with uniform amplitude and linear phase distribution in both x and y directions. To modelize the proposed structures, two formulations were given in a spectral and spatial domain, where the Moment (MoM) method combined with a generalized equivalent circuit (GEC) method was applied. Radiation pattern of coupled periodic antenna was shown by varying many parameters, such as frequencies, distance and Floquet states. The 3-D radiation beam of the coupled antenna array was analyzed and compared in several steering angles θs and coupling values dx. The simulation of this structure demonstrated that directivity decreased at higher coupling values. The secondary lobs in the antenna radiation pattern affected the main lobe gain by energy dispersal and considerable increasing of side lobe level (SLL) may be achieved. Therefore, the sweeping of the radiation beam in several steering directions affected the electromagnetic performance of the antenna system: the directivity at the steering angle θs = π⁄3 was more damaged and had 19.99 dB while the second at θs = 0 had about 35.11 dB. This parametric study of coupled structure used to concept smart periodic antenna with sweeping radiation beam.
文摘In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests and been employed for many wideband applications. A Printed Log-Periodic Dipole Antenna (PLPDA) with multiple notched bands is proposed for Ultra-WideBand (UWB) applications. An antenna with the notched frequencies of 1.03 GHz, 1.28 GHz, 1.72 GHz, 2.24 GHz and 2.51 GHz is designed, fabricated, and measured. An antenna model was established on the substrate of FR4 and feed by a stripline. The simulation results show that the antenna can achieve an impendence wide bandwidth from 0.89 to 2.58 GHz with return loss less than -10 dB and exhibit stable antenna gain. Furthermore, the measurement result is better consistent with simulation result.