期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Osteocyte pericellular and perilacunar matrices as markers of bone-implant mechanical integrity
1
作者 ReMY GAUTHIER HeLÈNE FOLLET +5 位作者 ANA-MARIA TRUNFIO-SFARGHIU DELPHINE FARLAY NINA ATTIK SYLVAIN MEILLE JeRÔME CHEVALIER DAVID MITTON 《BIOCELL》 SCIE 2022年第10期2209-2216,共8页
To develop durable bone healing strategies through improved control of bone repair,it is of critical importance to understand the mechanisms of bone mechanical integrity when in contact with biomaterials and implants.... To develop durable bone healing strategies through improved control of bone repair,it is of critical importance to understand the mechanisms of bone mechanical integrity when in contact with biomaterials and implants.Bone mechanical integrity is defined here as the adaptation of structural properties of remodeled bone in regard to an applied mechanical loading.Accordingly,the authors present why future investigations in bone repair and regeneration should emphasize on the matrix surrounding the osteocytes.Osteocytes are mechanosensitive cells considered as the orchestrators of bone remodeling,which is the biological process involved in bone homeostasis.These bone cells are trapped in an interconnected porous network,the lacunocanalicular network,which is embedded in a bone mineralized extracellular matrix.As a consequence of an applied mechanical loading,the bone deformation results in the deformation of this lacunocanalicular network inducing a shift in interstitial fluid pressure and velocity,thus resulting in osteocyte stimulation.The material environment surrounding each osteocyte,the so called perilacunar and pericellular matrices properties,define its mechanosensitivity.While this mechanical stimulation pathway is well known,the laws used to predict bone remodeling are based on strains developing at a tissue scale,suggesting that these strains are related to the shift in fluid pressure and velocity at the lacunocanalicular scale.While this relationship has been validated through observation in healthy bone,the fluid behavior at the bone-implant interface is more complex.The presence of the implant modifies fluid behavior,so that for the same strain at a tissue scale,the shift in fluid pressure and velocity will be different than in a healthy bone tissue.In that context,new markers for bone mechanical integrity,considering fluid behavior,have to be defined.The viewpoint exposed by the authors indicates that the properties of the pericellular and the perilacunar matrices have to be systematically investigated 展开更多
关键词 Bone mechanical integrity OSTEOCYTES Pericellular perilacunar MECHANOSENSITIVITY
下载PDF
Nanostructure and mechanical properties of the osteocyte lacunar-canalicular network-associated bone matrix revealed by quantitative nanomechanical mapping 被引量:1
2
作者 Shuai Zhang Fiona Linnea Bach-Gansmo +3 位作者 Dan Xia Flemming Besenbacher Henrik Birkedal Mingdong Dong 《Nano Research》 SCIE EI CAS CSCD 2015年第10期3250-3260,共11页
Osteocytes are the main bone cells embedded in the bone matrix where they form a large surface-area network called the lacunar-canalicular network (LCN), interconnecting their resident spaces with the lacunae by the... Osteocytes are the main bone cells embedded in the bone matrix where they form a large surface-area network called the lacunar-canalicular network (LCN), interconnecting their resident spaces with the lacunae by the canaliculi. Increasing evidence points toward osteocytes playing a pivotal role in maintaining bone quality. On the one hand, osteocytes transmit mechanical strain and microenvironmental signals through the LCN to regulate the activity of osteoblasts and osteoclasts; on the other hand, osteocytes are suggested to be able to remodel the LCN-associated bone matrix. However, due to the challenges involved in the assessment and characterization of the LCN-associated bone matrix, little is known about its structure and the corresponding mechanical properties. In this work, we used quantitative nanomechanical mapping, backscattered electron imaging, and nanoindentation to characterize the LCN-associated bone matrix. The results show that the techniques can be used to probe the LCN-associated bone matrix. Nanoindentation and quantitative mechanical mapping reveal spatially inhomogeneous mechanical properties of the bone matrix associated with the osteocyte lacunae and canaliculi. The obtained nano-topography and corresponding nano-mechanical maps reveal altered mechanical properties in the immediate vicinity of the osteocyte lacunae and canaliculi, which cannot be explained solely by the topographic change. 展开更多
关键词 lacunar-canalicularnetwork OSTEOCYTE perilacunar bone matrix pericanalicular bone matrix reduced modulus mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部