Peptide-based materials that have diverse structures and functionalities are an important type of biomaterials.In former times,peptide-based nanomaterials with excellent stability were constructed through self-assembl...Peptide-based materials that have diverse structures and functionalities are an important type of biomaterials.In former times,peptide-based nanomaterials with excellent stability were constructed through self-assembly.Compared with individual peptides,peptide-based self-assembly nanomaterials that form well-ordered superstructures possess many advantages such as good thermo-and mechanical stability,semiconductivity,piezoelectricity and optical properties.Moreover,due to their excellent biocompatibility and biological activity,peptide-based self-assembly nanomaterials have been vastly used in different fields.In this review,we provide the advances of peptide-based self-assembly nanostructures,focusing on the driving forces that dominate peptide self-assembly and assembly mechanisms of peptides.After that,we outline the synthesis and properties of peptide-based nanomaterials,followed by the applications of functional peptide nanomaterials.Finally,we provide perspectives on the challenges and future of peptide-based nanomaterials.展开更多
Due to low immobilized ligand density,limited binding capacity,and severe interference from serum proteins,developing ideal peptide-based biomaterials for precise recognition and in vivo analysis of biopharmaceuticals...Due to low immobilized ligand density,limited binding capacity,and severe interference from serum proteins,developing ideal peptide-based biomaterials for precise recognition and in vivo analysis of biopharmaceuticals remains a huge challenge.In this study,mimotope peptide modified pompon mum-like biomimetic magnetic microparticles(MMPs,3.8μm)that mimic the specific functionalities of CD20 on malignant B cells were developed for the first time.Benefit from the numerous ligand binding sites(Ni^(2+))on the pompon mum-like MMPs,these novel materials achieved≥10 times higher peptide ligand densities(>2300 mg/g)and antibody binding capacities(1380 mg/g)compared to previous reported biomaterials.Leveraging the high specificity of the mimotope peptide,rituximab can be precisely recognized and enriched from cell culture media or serum samples.We also established an LC-MS/MS method using the MMPs for tracking rituximab biotransformation in patient serum.Intriguingly,deamidation of Asn55 and Asn33,as well as oxidation of Met81 and Met34 were observed at the key complementarity determining regions of rituximab,which could potentially influence antibody function and require careful monitoring.Overall,these versatile biomimetic MMPs demonstrate superior recognition and enrichment capabilities for target antibodies,offering interesting possibilities for biotransformation analysis of biopharmaceuticals in patient serum.展开更多
BACKGROUND Malnutrition is common in critically ill patients,and it is associated with an increased risk of complications.Early enteral nutrition with adequate caloric and protein intake is critical nevertheless it is...BACKGROUND Malnutrition is common in critically ill patients,and it is associated with an increased risk of complications.Early enteral nutrition with adequate caloric and protein intake is critical nevertheless it is difficult to achieve.Peptide-based formulas have been shown to be beneficial in patients with feeding intolerance.However,there are limited studies showing the efficacy and safety of high-protein peptide-based formula in critically ill surgical patients.AIM To determine the effects of a high-protein peptide formulation on gastrointestinal tolerance,nutritional status,biochemical changes,and adverse events in patients in the surgery intensive care unit(SICU)compared to an isocaloric isonitrogenous standard polymeric formulation.METHODS This study was a multi-center double-blind,randomized controlled trial.We enrolled adult patients in the surgical intensive care unit,age≥15 years and expected to receive enteral feeding for at least 5-14 d post-operation.They were randomly assigned to receive either the high-protein peptide-based formula or the isocaloric isonitrogenous standard formula for 14 d.Gastric residual volume(GRV),nutritional status,body composition and biochemical parameters were assessed at baseline and on days 3,5,7,9,11,and 14.RESULTS A total of 19 patients were enrolled,9 patients in the peptide-based formula group and 10 patients in the standard formula group.During the study period,there were no differences of the average GRV,body weight,body composition,nutritional status and biochemical parameters in the patients receiving peptide-based formula,compared to the standard regimen.However,participants in the standard formula lost their body weight,body mass index(BMI)and skeletal muscle mass significantly.While body weight,BMI and muscle mass were maintained in the peptide-based formula,from baseline to day 14.Moreover,the participants in the peptide-based formula tended to reach their caloric target faster than the standard formula.CONCLUSION The study emphasizes the importance of ea展开更多
Traditional surgical treatment is difficult to thoroughly remove esophageal squamous cell carcinomas(ESCC),postoperative recurrence caused by residual tumor cells is a critical factor in the poor prognosis.Since surgi...Traditional surgical treatment is difficult to thoroughly remove esophageal squamous cell carcinomas(ESCC),postoperative recurrence caused by residual tumor cells is a critical factor in the poor prognosis.Since surgical resection promotes the local angiogenesis at the tumor site,further exacerbating the proliferation and invasion of residual tumor cells,it is urgent to inhibit angiogenesis after surgery.Here,a functional peptide-based nanomedicine was obtained from peptide–drug conjugates,which are composed of a hydrophilic targeting motif(vascular endothelial growth factor family and their receptors(VEGFR)targeting peptide for anti-angiogenesis),an ester-linked hydrophobic oridonin(ORI).The nanomedicine exhibits esterase-catalyzed disassembly and drug release,significantly enhanced the anti-tumor efficacy of chemotherapeutics in a postoperative tumor recurrence model through synergistic anti-angiogenic strategies.This study provides an integrated solution for anti-angiogenesisaugmented chemotherapy and demonstrates the encouraging potential for postoperative treatment.展开更多
Peptide-based probes play prominent roles in biomedical research due to their promising properties such as high biocompatibility,fast excretion, favorable pharmacokinetics as well as easy and robust preparation. Consi...Peptide-based probes play prominent roles in biomedical research due to their promising properties such as high biocompatibility,fast excretion, favorable pharmacokinetics as well as easy and robust preparation. Considering the translation of imaging probes into clinical applications, peptide-based probes remain to be the most desirable and optimal candidates. This review summarized the development of peptide-based probes with promising imaging modalities and highlighted the successful applications for in vivo biomedical imaging.展开更多
Hydrogels are a class of special materials that contain a large amount of water and behave like rubber.These materials have found broad applications in tissue engineering,cell culturing,regenerative medicine etc.Recen...Hydrogels are a class of special materials that contain a large amount of water and behave like rubber.These materials have found broad applications in tissue engineering,cell culturing,regenerative medicine etc.Recently,the exploration of peptide-based supramolecular hydrogels has greatly expanded the repertoire of hydrogels suitable for biomedical applications.However,the mechanical properties of peptide-based hydrogels are intrinsically weak.Therefore,it is crucial to develop methods that can improve the mechanical stability of such peptide-based hydrogels.In this review,we explore the factors that determine or influence the mechanical stability of peptide-based hydrogels and summarize several key elements that may guide scientists to achieve mechanically improved hydrogels.In addition,we exemplified several methods that have been successfully developed to prepare hydrogels with enhanced mechanical stability.These mechanically strong peptide-based hydrogels may find broad applications as novel biomaterials.It is still challenging to engineer hydrogels in order to mimic the mechanical properties of biological tissues.More hydrogel materials with optimal mechanical properties suitable for various types of biological applications will be available in the near future.展开更多
Lysine acetylation is one of the most prevalent and important posttranslational modifications(PTMs) in proteins. The process can be recognized by bromodomains(BRDs), which are a class of proteininteraction modules inv...Lysine acetylation is one of the most prevalent and important posttranslational modifications(PTMs) in proteins. The process can be recognized by bromodomains(BRDs), which are a class of proteininteraction modules involved in chromatin remodeling and transcriptional activation. The development of BRD fluorescent probes will be useful for monitoring the activity of BRDs in living cells as well as aiding inhibitor development. Herein we designed a peptide-based probe based on the proximity-induced protein conjugation reaction. The peptide-based probe is capable of covalently and selectively reacting with the unique cysteine residue in the bromodomain through proximity effect. Our experimental data showed that the probe displayed noticeable fluorescence response upon addition of BRD4(1). In-gel fluorescence scanning demonstrated that BRD4(1) can be covalently labelled by the probe. Moreover, the probe was shown to selectively detect BRD4(1) over other proteins. We envision that the probe developed in this study will provide a useful tool to further investigate the biological roles of BRDs.展开更多
Herein,we utilized nucleic acids induced peptide co-assembly strategy to develop novel nucleic acids induced peptide-based AIE(NIP-AIE)nanoparticles.Strong fluorescent of AIE could be observed when a little amount of ...Herein,we utilized nucleic acids induced peptide co-assembly strategy to develop novel nucleic acids induced peptide-based AIE(NIP-AIE)nanoparticles.Strong fluorescent of AIE could be observed when a little amount of nucleic acids was added into the peptide solution,and the intensity could be regulated by the concentration of nucleic acids.This AIE nanoparticle with good biocompatibility could achieve fast cell imaging.It is also proved that the fluorescence intensity of AIE decreased with time,which indicates that the reducible cross-linkers of Wpc peptide by GSH and nanoparticles gradually disintegrate in cell.Based on the different of AIE fluorescence signals which regulated by the formation and disintegration of nanoparticles,this AIE system is expected to be used for real-time monitoring of drug release from peptide-based nano carriers in vivo or in vitro,and may provide a new platform for the construction of other organic AIE nanoparticles.展开更多
The World Health Organization has declared the rapidly spreading coronavirus to be a global pandemic.The FDA is yet to approve a vaccine for human novel coronavirus.Here,we developed a peptide-based vaccine and used h...The World Health Organization has declared the rapidly spreading coronavirus to be a global pandemic.The FDA is yet to approve a vaccine for human novel coronavirus.Here,we developed a peptide-based vaccine and used high-throughput screening by molecular dynamics simulation to identify T-cell-and p-cell-recognized epitopes for producing specific antibod-ies against SARS-nCoV-2.We construct~12 P'antigenic epitope peptides to develop a more effective vaccine and identify specific antibodies.These epitope peptides selectively presented the best antigen presentation scores for both human pMHC class I and II alleles to develop a strong binding affinity.All antigens identified of SARS-nCoV-2 different proteins by each attached specific~1-7 L linker adaptor were used to construct a broad single peripheral peptide vaccine.It is expected to be highly antigenic with a minimum allergic effect.As a result of these exciting outcomes,expressing a vaccine using the intimated peptide was highly promising and positive to be highly proposed as epitope-based peptide vaccine of specific antibody against SARS-nCoV-2 by initiating T cells and β-cells.An in vitro study for the proposed peptide-based vaccine is.mostly recommended.Further clinical trials are required to check the efficacy of this vaccine.展开更多
Owing to its excellent biological properties,peptide has been widely used in the design of nanoprobes capable of enhancing tumor imaging signals.In recent years,a number of peptide-based nanoprobes with strong loading...Owing to its excellent biological properties,peptide has been widely used in the design of nanoprobes capable of enhancing tumor imaging signals.In recent years,a number of peptide-based nanoprobes with strong loading capacity and great biocompatibility have been developed for precision tumor imaging by coupling peptide motifs with different imaging agents.It is worth noting that,compared with“always on”mode,the use of stimulus-mediated in situ activatable mode to design and control the self-assembly or nanostructure transformation of peptide-based nanoprobes in vivo can achieve the significant improvement of imaging efficiency.Herein,we summarize the recent progress of in situ activatable peptide-based nanoprobes for tumor imaging in diverse imaging modes,including magnetic resonance imaging(MRI),fluorescence imaging(FI),photoacoustic imaging(PAI),radionuclide imaging(RI)and multimodal imaging.Finally,we briefly prospect the challenges and potential development directions of this field.展开更多
目的分析西安市某三甲医院药字号肠内营养制剂的使用情况,为临床合理使用药字号肠内营养制剂提供参考。方法从该院信息管理系统(hospital information system,HIS)中提取2019年至2021年药字号肠内营养制剂的用药数据,对全院药字号营养...目的分析西安市某三甲医院药字号肠内营养制剂的使用情况,为临床合理使用药字号肠内营养制剂提供参考。方法从该院信息管理系统(hospital information system,HIS)中提取2019年至2021年药字号肠内营养制剂的用药数据,对全院药字号营养制剂的销售情况及构成比、用药频度(defined daily doses,DDDs)、限定日费用(defined daily cost,DDC)等药物经济学指标以及各科室使用量进行回顾性统计分析。结果该院肠内营养制剂使用量2019年至2020年呈增长趋势,但2021年度有所下降。DDDs排名前3的制剂分别是百普力、能全素和瑞素。DDC排序前3的制剂是瑞先、百普素和百普力。肝胆外科3年间短肽类制剂使用量位居第1,整蛋白制剂使用量前3的科室分别是神经内科、重症医学科和康复科。结论该院肠内营养制剂平均年使用量偏低,肠内营养与肠外营养治疗比例不均衡。整蛋白制剂瑞先价格较高,患者经济负担重,肠内营养制剂应保质保效,同时应降低价格。临床肠内营养治疗率远低于实际营养不良反应发生率,营养科需进一步加强与临床科室的沟通协作,提高住院患者肠内营养治疗比例。展开更多
基金supported by Beijing Natural Science Foundation(JQ20038)the National Natural Science Foundation of China(61875015,T2125003,and 21801019)+1 种基金JSPS KAKENHI(Grant No.21H02873)JSPS International Joint Research Program(JPJSBP120207203).
文摘Peptide-based materials that have diverse structures and functionalities are an important type of biomaterials.In former times,peptide-based nanomaterials with excellent stability were constructed through self-assembly.Compared with individual peptides,peptide-based self-assembly nanomaterials that form well-ordered superstructures possess many advantages such as good thermo-and mechanical stability,semiconductivity,piezoelectricity and optical properties.Moreover,due to their excellent biocompatibility and biological activity,peptide-based self-assembly nanomaterials have been vastly used in different fields.In this review,we provide the advances of peptide-based self-assembly nanostructures,focusing on the driving forces that dominate peptide self-assembly and assembly mechanisms of peptides.After that,we outline the synthesis and properties of peptide-based nanomaterials,followed by the applications of functional peptide nanomaterials.Finally,we provide perspectives on the challenges and future of peptide-based nanomaterials.
基金supported by the National Natural Science Foundation of China(82173773,82273893,82373829)the Natural Science Foundation of Guangdong Province,China(2021A0505030039,2021A0505020014)+1 种基金the High-End Foreign Experts Project,China(G2021199005L)the Science and Technology Program of Guangdong Provincial Medical Products Administration,China(2023TDZ11)。
文摘Due to low immobilized ligand density,limited binding capacity,and severe interference from serum proteins,developing ideal peptide-based biomaterials for precise recognition and in vivo analysis of biopharmaceuticals remains a huge challenge.In this study,mimotope peptide modified pompon mum-like biomimetic magnetic microparticles(MMPs,3.8μm)that mimic the specific functionalities of CD20 on malignant B cells were developed for the first time.Benefit from the numerous ligand binding sites(Ni^(2+))on the pompon mum-like MMPs,these novel materials achieved≥10 times higher peptide ligand densities(>2300 mg/g)and antibody binding capacities(1380 mg/g)compared to previous reported biomaterials.Leveraging the high specificity of the mimotope peptide,rituximab can be precisely recognized and enriched from cell culture media or serum samples.We also established an LC-MS/MS method using the MMPs for tracking rituximab biotransformation in patient serum.Intriguingly,deamidation of Asn55 and Asn33,as well as oxidation of Met81 and Met34 were observed at the key complementarity determining regions of rituximab,which could potentially influence antibody function and require careful monitoring.Overall,these versatile biomimetic MMPs demonstrate superior recognition and enrichment capabilities for target antibodies,offering interesting possibilities for biotransformation analysis of biopharmaceuticals in patient serum.
文摘BACKGROUND Malnutrition is common in critically ill patients,and it is associated with an increased risk of complications.Early enteral nutrition with adequate caloric and protein intake is critical nevertheless it is difficult to achieve.Peptide-based formulas have been shown to be beneficial in patients with feeding intolerance.However,there are limited studies showing the efficacy and safety of high-protein peptide-based formula in critically ill surgical patients.AIM To determine the effects of a high-protein peptide formulation on gastrointestinal tolerance,nutritional status,biochemical changes,and adverse events in patients in the surgery intensive care unit(SICU)compared to an isocaloric isonitrogenous standard polymeric formulation.METHODS This study was a multi-center double-blind,randomized controlled trial.We enrolled adult patients in the surgical intensive care unit,age≥15 years and expected to receive enteral feeding for at least 5-14 d post-operation.They were randomly assigned to receive either the high-protein peptide-based formula or the isocaloric isonitrogenous standard formula for 14 d.Gastric residual volume(GRV),nutritional status,body composition and biochemical parameters were assessed at baseline and on days 3,5,7,9,11,and 14.RESULTS A total of 19 patients were enrolled,9 patients in the peptide-based formula group and 10 patients in the standard formula group.During the study period,there were no differences of the average GRV,body weight,body composition,nutritional status and biochemical parameters in the patients receiving peptide-based formula,compared to the standard regimen.However,participants in the standard formula lost their body weight,body mass index(BMI)and skeletal muscle mass significantly.While body weight,BMI and muscle mass were maintained in the peptide-based formula,from baseline to day 14.Moreover,the participants in the peptide-based formula tended to reach their caloric target faster than the standard formula.CONCLUSION The study emphasizes the importance of ea
基金the National Natural Science Foundation of China(Nos.32000998 and U2004123)the Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology(No.2022HYTP046)the China Postdoctoral Science Foundation(Nos.2019TQ0285,2019M662513,2021TQ0298,and 2022TQ0296).
文摘Traditional surgical treatment is difficult to thoroughly remove esophageal squamous cell carcinomas(ESCC),postoperative recurrence caused by residual tumor cells is a critical factor in the poor prognosis.Since surgical resection promotes the local angiogenesis at the tumor site,further exacerbating the proliferation and invasion of residual tumor cells,it is urgent to inhibit angiogenesis after surgery.Here,a functional peptide-based nanomedicine was obtained from peptide–drug conjugates,which are composed of a hydrophilic targeting motif(vascular endothelial growth factor family and their receptors(VEGFR)targeting peptide for anti-angiogenesis),an ester-linked hydrophobic oridonin(ORI).The nanomedicine exhibits esterase-catalyzed disassembly and drug release,significantly enhanced the anti-tumor efficacy of chemotherapeutics in a postoperative tumor recurrence model through synergistic anti-angiogenic strategies.This study provides an integrated solution for anti-angiogenesisaugmented chemotherapy and demonstrates the encouraging potential for postoperative treatment.
基金partially supported by grants from the National Natural Science Foundation of China(NSFC Nos. 21708012,81773674, 81573383,21390402, 81725009, 21788102, 81425015)111 Project (No. B17019)+6 种基金NKR&DPC (No. 2016YFA00900)NSFHP(Nos. 2017CFB151, 2017CFA024, 2017CFB711, 2016ACA126)ABRPSTCS (No. SYG201521)NSFJP (No. BK20160387)Shenzhen Science and Technology Research Grant (No. JCYJ20170303170809222)self-determined research funds of CCNU from the colleges, basic research and operation of MOE for the Central Universities (No. 23020205170469)Wuhan Morning Light Plan of Youth Science and Technology (No. 201705304010321)
文摘Peptide-based probes play prominent roles in biomedical research due to their promising properties such as high biocompatibility,fast excretion, favorable pharmacokinetics as well as easy and robust preparation. Considering the translation of imaging probes into clinical applications, peptide-based probes remain to be the most desirable and optimal candidates. This review summarized the development of peptide-based probes with promising imaging modalities and highlighted the successful applications for in vivo biomedical imaging.
基金supported by the National Natural Science Foundation of China(Grant Nos.11304156,11334004,91127026,31170813 and 11074115)China Postdoctoral Science Foundation(Grant No.2013M531312)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Program for New Century Excellent Talents in University
文摘Hydrogels are a class of special materials that contain a large amount of water and behave like rubber.These materials have found broad applications in tissue engineering,cell culturing,regenerative medicine etc.Recently,the exploration of peptide-based supramolecular hydrogels has greatly expanded the repertoire of hydrogels suitable for biomedical applications.However,the mechanical properties of peptide-based hydrogels are intrinsically weak.Therefore,it is crucial to develop methods that can improve the mechanical stability of such peptide-based hydrogels.In this review,we explore the factors that determine or influence the mechanical stability of peptide-based hydrogels and summarize several key elements that may guide scientists to achieve mechanically improved hydrogels.In addition,we exemplified several methods that have been successfully developed to prepare hydrogels with enhanced mechanical stability.These mechanically strong peptide-based hydrogels may find broad applications as novel biomaterials.It is still challenging to engineer hydrogels in order to mimic the mechanical properties of biological tissues.More hydrogel materials with optimal mechanical properties suitable for various types of biological applications will be available in the near future.
基金the financial support from the National Natural Science Foundation of China (No. 21572190)the Hong Kong Early Career Scheme Grant (No. 21300714)the City University of Hong Kong Grant (No. 9667147)
文摘Lysine acetylation is one of the most prevalent and important posttranslational modifications(PTMs) in proteins. The process can be recognized by bromodomains(BRDs), which are a class of proteininteraction modules involved in chromatin remodeling and transcriptional activation. The development of BRD fluorescent probes will be useful for monitoring the activity of BRDs in living cells as well as aiding inhibitor development. Herein we designed a peptide-based probe based on the proximity-induced protein conjugation reaction. The peptide-based probe is capable of covalently and selectively reacting with the unique cysteine residue in the bromodomain through proximity effect. Our experimental data showed that the probe displayed noticeable fluorescence response upon addition of BRD4(1). In-gel fluorescence scanning demonstrated that BRD4(1) can be covalently labelled by the probe. Moreover, the probe was shown to selectively detect BRD4(1) over other proteins. We envision that the probe developed in this study will provide a useful tool to further investigate the biological roles of BRDs.
基金financial support from the Natural Science Foundation of China(Nos.21778009,21977010 and 81701818)the Natural Science Foundation of Guangdong Province(No.2020A1515010522)+4 种基金the Guangdong Foundation for Basic and Applied Basic Research(No.2019A1515110365)the Shenzhen Science and Technology Innovation Committee(Nos.JCYJ20180507181527112,JCYJ201805081522131455 and JCYJ20170817172023838)the China Postdoctoral Science Foundation(No.2020M670054)financial support from Beijing National Laboratory of Molecular Science open grant(No.BNLMS20160112)Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions(No.2019SHIBS0004)。
文摘Herein,we utilized nucleic acids induced peptide co-assembly strategy to develop novel nucleic acids induced peptide-based AIE(NIP-AIE)nanoparticles.Strong fluorescent of AIE could be observed when a little amount of nucleic acids was added into the peptide solution,and the intensity could be regulated by the concentration of nucleic acids.This AIE nanoparticle with good biocompatibility could achieve fast cell imaging.It is also proved that the fluorescence intensity of AIE decreased with time,which indicates that the reducible cross-linkers of Wpc peptide by GSH and nanoparticles gradually disintegrate in cell.Based on the different of AIE fluorescence signals which regulated by the formation and disintegration of nanoparticles,this AIE system is expected to be used for real-time monitoring of drug release from peptide-based nano carriers in vivo or in vitro,and may provide a new platform for the construction of other organic AIE nanoparticles.
文摘The World Health Organization has declared the rapidly spreading coronavirus to be a global pandemic.The FDA is yet to approve a vaccine for human novel coronavirus.Here,we developed a peptide-based vaccine and used high-throughput screening by molecular dynamics simulation to identify T-cell-and p-cell-recognized epitopes for producing specific antibod-ies against SARS-nCoV-2.We construct~12 P'antigenic epitope peptides to develop a more effective vaccine and identify specific antibodies.These epitope peptides selectively presented the best antigen presentation scores for both human pMHC class I and II alleles to develop a strong binding affinity.All antigens identified of SARS-nCoV-2 different proteins by each attached specific~1-7 L linker adaptor were used to construct a broad single peripheral peptide vaccine.It is expected to be highly antigenic with a minimum allergic effect.As a result of these exciting outcomes,expressing a vaccine using the intimated peptide was highly promising and positive to be highly proposed as epitope-based peptide vaccine of specific antibody against SARS-nCoV-2 by initiating T cells and β-cells.An in vitro study for the proposed peptide-based vaccine is.mostly recommended.Further clinical trials are required to check the efficacy of this vaccine.
基金This work was supported by the National Natural Science Foundation of China(Nos.22074016,21725505,81821001).
文摘Owing to its excellent biological properties,peptide has been widely used in the design of nanoprobes capable of enhancing tumor imaging signals.In recent years,a number of peptide-based nanoprobes with strong loading capacity and great biocompatibility have been developed for precision tumor imaging by coupling peptide motifs with different imaging agents.It is worth noting that,compared with“always on”mode,the use of stimulus-mediated in situ activatable mode to design and control the self-assembly or nanostructure transformation of peptide-based nanoprobes in vivo can achieve the significant improvement of imaging efficiency.Herein,we summarize the recent progress of in situ activatable peptide-based nanoprobes for tumor imaging in diverse imaging modes,including magnetic resonance imaging(MRI),fluorescence imaging(FI),photoacoustic imaging(PAI),radionuclide imaging(RI)and multimodal imaging.Finally,we briefly prospect the challenges and potential development directions of this field.