期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Efficient Shrinkage Estimation about the Partially Linear Varying Coefficient Model with Random Effect for Longitudinal Data
1
作者 Wanbin Li 《Open Journal of Statistics》 2016年第5期862-872,共12页
In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c... In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure. 展开更多
关键词 Partially Linear Varying Coefficient Model Mixed Effect penalized estimating equation
下载PDF
高维线性模型的稀疏半参有效估计
2
作者 黄勉 付欣郁 姚卫鑫 《中国科学:数学》 CSCD 北大核心 2023年第4期591-614,共24页
高维线性回归估计是一个被大量学者研究的重要统计学问题.在误差分布未知的情况下,如何将有效性纳入高维估计仍是一个尚未解决且具有挑战性的问题.最小二乘估计在非Gauss误差密度下会损失估计的效率,而极大似然估计由于误差密度未知,无... 高维线性回归估计是一个被大量学者研究的重要统计学问题.在误差分布未知的情况下,如何将有效性纳入高维估计仍是一个尚未解决且具有挑战性的问题.最小二乘估计在非Gauss误差密度下会损失估计的效率,而极大似然估计由于误差密度未知,无法直接被应用.基于惩罚估计方程,本文提出一种新的稀疏半参有效估计方法应用于高维线性回归的估计.本文证明了在误差密度未知的超高维回归下,新的估计渐近地与具有神谕性的极大似然估计一样有效,因此对于非Gauss误差密度,它比传统的惩罚最小二乘估计更有效.此外,本文证明了几种常用的高维回归估计是本文方法的特例.模拟和实际数据的结果验证了本文所提出方法的有效性. 展开更多
关键词 高维线性回归 惩罚估计方程 半参有效估计 稀疏模型估计
原文传递
高维纵向数据的惩罚expectile估计
3
作者 樊梅红 李婷婷 《西南师范大学学报(自然科学版)》 CAS 2023年第6期70-80,共11页
基于期望分位数(expectile)回归理论,提出高维纵向数据的惩罚expectile(PGEEE)估计,在正则条件下,建立了估计量的Oracle性质.数值模拟和实证结果表明,PGEEE估计在实现变量选择的同时,提供了模型回归系数的相合估计,并且该方法可以有效... 基于期望分位数(expectile)回归理论,提出高维纵向数据的惩罚expectile(PGEEE)估计,在正则条件下,建立了估计量的Oracle性质.数值模拟和实证结果表明,PGEEE估计在实现变量选择的同时,提供了模型回归系数的相合估计,并且该方法可以有效识别异方差,刻画数据的异质结构,挖掘数据中更丰富的信息. 展开更多
关键词 expectile 惩罚expectile估计方程 Oracle性质 异方差
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部