Little by little, we are entering the new era, intelligent interfaces are absorbing us more and more every day, and artificial intelligence makes its presence in a stealthy way. Virtual humans that represent an evolut...Little by little, we are entering the new era, intelligent interfaces are absorbing us more and more every day, and artificial intelligence makes its presence in a stealthy way. Virtual humans that represent an evolution of autonomous virtual agents;they are computer programs and in the future capable of carrying out different activities in certain environments. They will give the illusion of being human;they will have a body, and they will be immersed in an environment. They will have a set of senses that will allow them: 1) Sensations and therefore associated expressions;2) Communication;3) Learning;4) Remembering events, among others. By integrating the above, they will have a personality and autonomy, so they will be able to plan with respect to objectives;allowing them to decide and take actions with their body, in other words, they will count on awareness. The applications will be focused on environments that they will inhabit, or as interfaces that will interact with other systems. The application domains will be multiple;one of them being education. This article shows the design of OANNA like an avatar with the role of pedagogical agent. It was modeled as an affective-cognitive structure related to the teaching-learning process linked to a pedagogical agent that represents the interface of an artilect. OANNA, has the necessary animations for intervention within the teaching-learning process.展开更多
This research is framed within the affective computing, which explains the importance of emotions in human cognition (decision making, perception, interaction and human intelligence). Applying this approach to a pedag...This research is framed within the affective computing, which explains the importance of emotions in human cognition (decision making, perception, interaction and human intelligence). Applying this approach to a pedagogical agent is an essential part to enhance the effectiveness of the teaching-learning process of an intelligent learning system. This work focuses on the design of the inference engine that will give life to the interface, where the latter is represented by a pedagogical agent. The inference engine is based on an affective-motivational model. This model is implemented by using artificial intelligence technique called fuzzy cognitive maps.展开更多
文摘Little by little, we are entering the new era, intelligent interfaces are absorbing us more and more every day, and artificial intelligence makes its presence in a stealthy way. Virtual humans that represent an evolution of autonomous virtual agents;they are computer programs and in the future capable of carrying out different activities in certain environments. They will give the illusion of being human;they will have a body, and they will be immersed in an environment. They will have a set of senses that will allow them: 1) Sensations and therefore associated expressions;2) Communication;3) Learning;4) Remembering events, among others. By integrating the above, they will have a personality and autonomy, so they will be able to plan with respect to objectives;allowing them to decide and take actions with their body, in other words, they will count on awareness. The applications will be focused on environments that they will inhabit, or as interfaces that will interact with other systems. The application domains will be multiple;one of them being education. This article shows the design of OANNA like an avatar with the role of pedagogical agent. It was modeled as an affective-cognitive structure related to the teaching-learning process linked to a pedagogical agent that represents the interface of an artilect. OANNA, has the necessary animations for intervention within the teaching-learning process.
文摘This research is framed within the affective computing, which explains the importance of emotions in human cognition (decision making, perception, interaction and human intelligence). Applying this approach to a pedagogical agent is an essential part to enhance the effectiveness of the teaching-learning process of an intelligent learning system. This work focuses on the design of the inference engine that will give life to the interface, where the latter is represented by a pedagogical agent. The inference engine is based on an affective-motivational model. This model is implemented by using artificial intelligence technique called fuzzy cognitive maps.