Ionizing radiation is extensively used in medicine and its contribution to both diagnosis and therapy is undisputable.However,the use of ionizing radiation also involves a certain risk since it may cause damage to tis...Ionizing radiation is extensively used in medicine and its contribution to both diagnosis and therapy is undisputable.However,the use of ionizing radiation also involves a certain risk since it may cause damage to tissues and organs and trigger carcinogenesis.Computed tomography(CT) is currently one of the major contributors to the collective population radiation dose both because it is a relatively high dose examination and an increasing number of people are subjected to CT examinations many times during their lifetime.The evolution of CT scanner technology has greatly increased the clinical applications of CT and its availability throughout the world and made it a routine rather than a specialized examination.With the modern multislice CT scanners,fast volume scanning of the whole human body within less than 1 min is now feasible.Two dimensional images of superb quality can be reconstructed in every possible plane with respect to the patient axis(e.g.axial,sagital and coronal).Furthermore,three-dimensional images of all anatomic structures and organs can be produced with only minimal additional effort(e.g.skeleton,tracheobronchial tree,gastrointestinal system and cardiovascular system).All these applications,which are diagnostically valuable,also involve a significant radiation risk.Therefore,all medical professionals involved with CT,either as referring or examining medical doctors must be aware of the risks involved before they decide to prescribe or perform CT examinations.Ultimately,the final decision concerning justification for a prescribed CT examination lies upon the radiologist.In this paper,we summarize the basic information concerning the detrimental effects of ionizing radiation,as well as the CT dosimetry background.Furthermore,after a brief summary of the evolution of CT scanning,the current CT scanner technology and its special features with respect to patient doses are given in detail.Some numerical data is also given in order to comprehend the magnitude of the potential radiation risk involved 展开更多
Background: Among medical technologies that use ionizing radiation, CT is currently the radio diagnostic technic that can deliver the highest radiation to the Patient compared with other conventional procedures. In de...Background: Among medical technologies that use ionizing radiation, CT is currently the radio diagnostic technic that can deliver the highest radiation to the Patient compared with other conventional procedures. In developing countries, the uses and risks of CT have not been well characterized. Objective: To estimate the lifetime attributable risk (LAR) incidence and mortality for cancer for each procedure for adult’s patients who had Computed Tomography examinations in 10 imaging centers in the city of Douala-Cameroon so as to provide a reference data. Materials and Methods: We conducted a cross-sectional study describing radiation dose associated with the 8 most common types of diagnostic CT studies performed on 1287 consecutive adult patients at 10 Douala radiology department. We estimated lifetime attributable risks of cancer by study type from these measured doses. Estimation of LAR for cancer incidence and mortality was based on the effective dose, patient’s sex and age at exposure using the BIER VII preferred models. Results: Mean effective dose from CT scans examinations varied from: 0.30 and 8.81 mSv. The highest doses were observed for lumbar spine CT (8.81 mSv), followed by abdomen-pelvis procedure (6.46 mSv), chest-abdomen-pelvic CT (6.61 mSv), chest CT (3.90 mSv), cervical Spine CT (3.05 mSv), head CT (1.7 mSv) and lower for sinus CT (0.30 mSv). The LAR values of all cancer from patients’ CT scans obtained vary from 67.13 excess per 100,000 (about 1 in 1489) and 0.45 excess per 100,000 (about 1 in 222,222). All cancer risk was high for lumbar spine CT in women 20 years old (67.13 excess deaths in 100,000 scans) followed by chest-abdomen-pelvic CT (50.36 excess deaths in 100,000 scans) and abdomen-pelvic CT (49.22 excess deaths in 100,000 scans) for the same age group. The LAR of incidence and mortality values were higher from female’s patients than males and higher for younger than older patients. Conclusion: This study was set out to estimate the LAR values associated with adult common CT sc展开更多
CT-scan is the most irradiating tool in diagnostic radiology. For 5% - 10% of diagnostic X-ray procedures, it is responsible for 34% of irradiation according to UNSCEAR. Patients radiation protection must therefore be...CT-scan is the most irradiating tool in diagnostic radiology. For 5% - 10% of diagnostic X-ray procedures, it is responsible for 34% of irradiation according to UNSCEAR. Patients radiation protection must therefore be increased during CT-scan procedures. This requires the rigorous application of optimization principle which imposes to have “diagnostic reference levels”. Objective: The aim of this study was to determine the diagnostic reference levels (DRLs) of the four most frequent CT-scans examinations of adults in Cameroon. Material and Method: It was a cross-sectional pilot study carried out from April to September 2015 in five health facilities using CT-scan in Cameroon. The studied variables were: patients age and sex, type of CT-scan examination (cerebral, chest, abdomino-pelvic, lumbar spine), Used of IV contrast (IV﹣/ IV+), acquisition length, time of tube rotation, voltage (kV), mAs, pitch, thickness of slices, CTDIvol and DLP. For each type of examination, at least 30 patients were included per center, consecutively on the randomly predetermined days. The DRL for each type of examination was defined as the 75th percentile of its PDL and CTDIvol. Results: Of the 696 examinations, 41.2% were cerebral, 26.9% abdomino-pelvic, 17.7% lumbar spine and 14.2% chest. The mean age of patients was 52 ± 15 years [20 - 90 years], 58.9% were 50 years and older. The sex-ratio was 1.26 (55.9% males). The CT machines were 4, 8 and 16 multidetectors. The 75th percentile of DLP or DRLs [standard deviation] was: [1150 ± 278 mGy·cm], [770 ± 477 mGy·cm], [720 ± 170 mGy·cm] and [715 ± 187 mGy·cm] respectively for cerebral, lumbar spine, abdominopelvic and chest CT-scans. Taking in consideration the number of detectors, the 75th percentile of the Dose-Length product decreased with the increase number of detectors for cerebral examinations but was the highest with 16 MDCT for the abdominopelvic, lumbar spine and chest CT-scans. For the chest and lumbar spine examinations, there was a significant increase in patie展开更多
This study designed to evaluate the entrance surface air kerma (ESAK) to the patient during X-ray examination to the skull antero-posterior (AP), skull Lateral (LAT), chest postero-anterior (PA), Lumber spine AP/LAT a...This study designed to evaluate the entrance surface air kerma (ESAK) to the patient during X-ray examination to the skull antero-posterior (AP), skull Lateral (LAT), chest postero-anterior (PA), Lumber spine AP/LAT and Pelvis AP. Totally, 408 patients were included in this study using computed radiography (CR) in different three hospitals in Khartoum;five X-ray machines were covered. The entrance surface air kerma (ESAK) was calculated for each patient from the exposure parameters using different peak tube voltages. Patient’s data such as (age and weight) and exposure parameters (kVp) and (mAs) were recorded. The result obtained showed that, the entrance surface air kerma ranged from 0.88 to 3.30 mGy for Skull (AP), 0.588 to 1.87 mGy for skull (LAT), 0.03 to 2 mGy for chest PA, 1.50 to 3.40 mGy Lumbar spine AP, 2.60 to 5.15 mGy for Lumbar spine (LAT), and 1.05 to 4.40 mGy for Pelvis. This study provides additional data that can help the regulatory authority to establish reference dose level for diagnostic radiology in Sudan. This study recommends that the CR operator must be used to optimize the patient dose by using the best strategies available for reducing radiation dose. Computed radiography must be used with high level training for medical staff to reduce the dose;each radiology department should implement a patient dose measurement quality assurance programme. Doses to the patients should be regularly monitored and the proposed national DRLs should be taken as guidance for optimization.展开更多
Information about the peak skin dose and Dose Area product (DAP) from percutaneous transluminal coronary angioplasty (PTCA) and coronary angiography (CA) was collected from three catheter application rooms. The range ...Information about the peak skin dose and Dose Area product (DAP) from percutaneous transluminal coronary angioplasty (PTCA) and coronary angiography (CA) was collected from three catheter application rooms. The range of maximum photon energy was 50 - 125 kVp and the fluoroscopy time was 0.6 - 52 seconds. Values of up to 143 Gy·cm2 for DAP and 0.752 mGy for cumulative dose (CD) were found in CA procedures. Otherwise the DAP and CD for PTCA were found to be 143 Gy·cm2 and 2.287 mGy respectively in 3rd Quartile. The relation between the fluoroscopy time and the DAP is also considered. Objectives: The objective of this study is to obtain information about patient peak skin doses (PSD), dose area product (DAP), Fluoroscopy Time (FT) and Cumulative Dose (CD) from PTCA and CA which is the most predominant with respect to high skin doses in addition to other procedures. The aim of this study is also to assess the radiation dose received by patients undergoing interventional radiology procedures, by identifying the procedures that deliver the highest doses. This study is also helpful to establish the reference dose level for adult patients undergoing interventional procedure, and to provide recommendations on how to reduce dose on selected procedures that have been identified to deliver patient dose values near the ICRP (International Commission on Radiological Protection) threshold values.展开更多
For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protoc...For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protocol followed by a calibration laboratory is usually different from the protocols that are followed by different clinics, which may result in variations in the patient dose.Our prime objective in this study was to investigate the effect of the two protocols on dosimetry measurements.Dose measurements were performed for a Co-60 teletherapy unit and a high-energy Varian linear accelerator with 6 and 15 MV photon and 6, 9, 12, and 15 MeV electron beams, following the recommendations and procedures of the AAPM TG-51 and IAEA TRS-398 dosimetry protocols. The dosimetry systems used for this study were calibrated in a Co-60 radiation beam at the Secondary Standard Dosimetry Laboratory(SSDL) PINSTECH,Pakistan, following the IAEA TRS-398 protocol. The ratio of the measured absorbed doses to water in clinical setting,D_w(TG-51/TRS-398), was 0.999 and 0.997 for 6 and15 MV photon beams,whereas these ratios were 1.013,1.009, 1.003, and 1.000 for 6, 9, 12, and 15 MeV electron beams, respectively. This difference in the absorbed dosesto-water D_w ratio may be attributed mainly due to beam quality(K_Q) and ion recombination correction factor.展开更多
X-ray-computed tomography (CT) has become one of the most important investigation procedures worldwide. The study aimed to assess image quality parameters, mainly noise, and radiation doses during abdominal examinatio...X-ray-computed tomography (CT) has become one of the most important investigation procedures worldwide. The study aimed to assess image quality parameters, mainly noise, and radiation doses during abdominal examination. This study examined the diagnostic parameters (kilo voltage, tube current time product, slice thickness, and pitch) and their effects on image quality as well as the radiation doses received from computed tomography scanners using phantom. The study carried out in four CT centers in Sudan. The study applied prospective and experimental methods. The study demonstrated there was a linear correlation between diagnostic parameters and image noise. The reduction in milli-ampere second and peak kilo voltage increased the image noise. Moreover increasing the pitch led to an increase in the image noise, whereas increasing the slice thickness, reduced the image noise. There was also a linear relationship between kilo voltage and radiation dose at Elnileen diagnostic center characterized by an increase kilo voltages values which led to an increase in the radiation dose by 92% and a reduction in the image noise by 83%. However, at Antalya medical center, increasing in kilo voltage values led to an increase in the radiation dose by 35% and a reduction in the image noise by 26%. Also increasing in milli-ampere second values led to an increase in the radiation dose by 49% and a reduction in the image noise by 46% in a phantom compared with an increase in radiation dose by 82% and a reduction in the image noise by 51% in patients .The study found that an optimal protocol for adult abdominal scan at Antalya medical center was 4.22HU for image noise and 10.45 mGy for radiation dose when using 120 kVp, 300 mAs, 5 mm slice thickness and pitch of 0.8. At Elnileen diagnostic center, however, the optimal protocol was 5.4 HU for image noise and 5.4 mGy for radiation dose using 130 kVp, 50 mAs, 10 mm slice thickness and pitch of 2. In addition, the quality control tests for image quality parameters carried out at the two展开更多
Medical diagnostic X-rays are the largest manmade source of ionizing radiation received by the members of the general public. The aim of this study was to evaluate the radiographic reject/repeat rate and also to deter...Medical diagnostic X-rays are the largest manmade source of ionizing radiation received by the members of the general public. The aim of this study was to evaluate the radiographic reject/repeat rate and also to determine dose to the patients from radiographic rejects/repeats in radiology centers of Urmia University of Medical Sciences. During a 4 month period the most frequently examinations were chosen in three radiology centers. A form was designed as a reject/repeat analysis form for radiographers to complete each time a film was rejected by radiologists or repeated. The collected data were compiled at the end of each week and entered into a computer for analysis at the end of study. The results of this study showed that highest and lowest repetition rates were for pelvis, 14.01% and upper limb, 4.17%, respectively. The main reasons of repetition of radiographs were due to exposure (54%) and positioning (18%) errors. The average repeat rate in all three hospitals was 7.20%. It was found that human error has important role to repetition of radiographs. It is demonstrated that those patients having repeated radiographs received an average of 3.23 Gy·cm2. Based on the findings of this study it must be remembered that the highest repetition rate was for pelvis. Considering the radiosensitive organs related to pelvis especially in pediatric patients some special considerations must be applied for pelvis examinations.展开更多
文摘Ionizing radiation is extensively used in medicine and its contribution to both diagnosis and therapy is undisputable.However,the use of ionizing radiation also involves a certain risk since it may cause damage to tissues and organs and trigger carcinogenesis.Computed tomography(CT) is currently one of the major contributors to the collective population radiation dose both because it is a relatively high dose examination and an increasing number of people are subjected to CT examinations many times during their lifetime.The evolution of CT scanner technology has greatly increased the clinical applications of CT and its availability throughout the world and made it a routine rather than a specialized examination.With the modern multislice CT scanners,fast volume scanning of the whole human body within less than 1 min is now feasible.Two dimensional images of superb quality can be reconstructed in every possible plane with respect to the patient axis(e.g.axial,sagital and coronal).Furthermore,three-dimensional images of all anatomic structures and organs can be produced with only minimal additional effort(e.g.skeleton,tracheobronchial tree,gastrointestinal system and cardiovascular system).All these applications,which are diagnostically valuable,also involve a significant radiation risk.Therefore,all medical professionals involved with CT,either as referring or examining medical doctors must be aware of the risks involved before they decide to prescribe or perform CT examinations.Ultimately,the final decision concerning justification for a prescribed CT examination lies upon the radiologist.In this paper,we summarize the basic information concerning the detrimental effects of ionizing radiation,as well as the CT dosimetry background.Furthermore,after a brief summary of the evolution of CT scanning,the current CT scanner technology and its special features with respect to patient doses are given in detail.Some numerical data is also given in order to comprehend the magnitude of the potential radiation risk involved
文摘Background: Among medical technologies that use ionizing radiation, CT is currently the radio diagnostic technic that can deliver the highest radiation to the Patient compared with other conventional procedures. In developing countries, the uses and risks of CT have not been well characterized. Objective: To estimate the lifetime attributable risk (LAR) incidence and mortality for cancer for each procedure for adult’s patients who had Computed Tomography examinations in 10 imaging centers in the city of Douala-Cameroon so as to provide a reference data. Materials and Methods: We conducted a cross-sectional study describing radiation dose associated with the 8 most common types of diagnostic CT studies performed on 1287 consecutive adult patients at 10 Douala radiology department. We estimated lifetime attributable risks of cancer by study type from these measured doses. Estimation of LAR for cancer incidence and mortality was based on the effective dose, patient’s sex and age at exposure using the BIER VII preferred models. Results: Mean effective dose from CT scans examinations varied from: 0.30 and 8.81 mSv. The highest doses were observed for lumbar spine CT (8.81 mSv), followed by abdomen-pelvis procedure (6.46 mSv), chest-abdomen-pelvic CT (6.61 mSv), chest CT (3.90 mSv), cervical Spine CT (3.05 mSv), head CT (1.7 mSv) and lower for sinus CT (0.30 mSv). The LAR values of all cancer from patients’ CT scans obtained vary from 67.13 excess per 100,000 (about 1 in 1489) and 0.45 excess per 100,000 (about 1 in 222,222). All cancer risk was high for lumbar spine CT in women 20 years old (67.13 excess deaths in 100,000 scans) followed by chest-abdomen-pelvic CT (50.36 excess deaths in 100,000 scans) and abdomen-pelvic CT (49.22 excess deaths in 100,000 scans) for the same age group. The LAR of incidence and mortality values were higher from female’s patients than males and higher for younger than older patients. Conclusion: This study was set out to estimate the LAR values associated with adult common CT sc
文摘CT-scan is the most irradiating tool in diagnostic radiology. For 5% - 10% of diagnostic X-ray procedures, it is responsible for 34% of irradiation according to UNSCEAR. Patients radiation protection must therefore be increased during CT-scan procedures. This requires the rigorous application of optimization principle which imposes to have “diagnostic reference levels”. Objective: The aim of this study was to determine the diagnostic reference levels (DRLs) of the four most frequent CT-scans examinations of adults in Cameroon. Material and Method: It was a cross-sectional pilot study carried out from April to September 2015 in five health facilities using CT-scan in Cameroon. The studied variables were: patients age and sex, type of CT-scan examination (cerebral, chest, abdomino-pelvic, lumbar spine), Used of IV contrast (IV﹣/ IV+), acquisition length, time of tube rotation, voltage (kV), mAs, pitch, thickness of slices, CTDIvol and DLP. For each type of examination, at least 30 patients were included per center, consecutively on the randomly predetermined days. The DRL for each type of examination was defined as the 75th percentile of its PDL and CTDIvol. Results: Of the 696 examinations, 41.2% were cerebral, 26.9% abdomino-pelvic, 17.7% lumbar spine and 14.2% chest. The mean age of patients was 52 ± 15 years [20 - 90 years], 58.9% were 50 years and older. The sex-ratio was 1.26 (55.9% males). The CT machines were 4, 8 and 16 multidetectors. The 75th percentile of DLP or DRLs [standard deviation] was: [1150 ± 278 mGy·cm], [770 ± 477 mGy·cm], [720 ± 170 mGy·cm] and [715 ± 187 mGy·cm] respectively for cerebral, lumbar spine, abdominopelvic and chest CT-scans. Taking in consideration the number of detectors, the 75th percentile of the Dose-Length product decreased with the increase number of detectors for cerebral examinations but was the highest with 16 MDCT for the abdominopelvic, lumbar spine and chest CT-scans. For the chest and lumbar spine examinations, there was a significant increase in patie
文摘This study designed to evaluate the entrance surface air kerma (ESAK) to the patient during X-ray examination to the skull antero-posterior (AP), skull Lateral (LAT), chest postero-anterior (PA), Lumber spine AP/LAT and Pelvis AP. Totally, 408 patients were included in this study using computed radiography (CR) in different three hospitals in Khartoum;five X-ray machines were covered. The entrance surface air kerma (ESAK) was calculated for each patient from the exposure parameters using different peak tube voltages. Patient’s data such as (age and weight) and exposure parameters (kVp) and (mAs) were recorded. The result obtained showed that, the entrance surface air kerma ranged from 0.88 to 3.30 mGy for Skull (AP), 0.588 to 1.87 mGy for skull (LAT), 0.03 to 2 mGy for chest PA, 1.50 to 3.40 mGy Lumbar spine AP, 2.60 to 5.15 mGy for Lumbar spine (LAT), and 1.05 to 4.40 mGy for Pelvis. This study provides additional data that can help the regulatory authority to establish reference dose level for diagnostic radiology in Sudan. This study recommends that the CR operator must be used to optimize the patient dose by using the best strategies available for reducing radiation dose. Computed radiography must be used with high level training for medical staff to reduce the dose;each radiology department should implement a patient dose measurement quality assurance programme. Doses to the patients should be regularly monitored and the proposed national DRLs should be taken as guidance for optimization.
文摘Information about the peak skin dose and Dose Area product (DAP) from percutaneous transluminal coronary angioplasty (PTCA) and coronary angiography (CA) was collected from three catheter application rooms. The range of maximum photon energy was 50 - 125 kVp and the fluoroscopy time was 0.6 - 52 seconds. Values of up to 143 Gy·cm2 for DAP and 0.752 mGy for cumulative dose (CD) were found in CA procedures. Otherwise the DAP and CD for PTCA were found to be 143 Gy·cm2 and 2.287 mGy respectively in 3rd Quartile. The relation between the fluoroscopy time and the DAP is also considered. Objectives: The objective of this study is to obtain information about patient peak skin doses (PSD), dose area product (DAP), Fluoroscopy Time (FT) and Cumulative Dose (CD) from PTCA and CA which is the most predominant with respect to high skin doses in addition to other procedures. The aim of this study is also to assess the radiation dose received by patients undergoing interventional radiology procedures, by identifying the procedures that deliver the highest doses. This study is also helpful to establish the reference dose level for adult patients undergoing interventional procedure, and to provide recommendations on how to reduce dose on selected procedures that have been identified to deliver patient dose values near the ICRP (International Commission on Radiological Protection) threshold values.
文摘For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protocol followed by a calibration laboratory is usually different from the protocols that are followed by different clinics, which may result in variations in the patient dose.Our prime objective in this study was to investigate the effect of the two protocols on dosimetry measurements.Dose measurements were performed for a Co-60 teletherapy unit and a high-energy Varian linear accelerator with 6 and 15 MV photon and 6, 9, 12, and 15 MeV electron beams, following the recommendations and procedures of the AAPM TG-51 and IAEA TRS-398 dosimetry protocols. The dosimetry systems used for this study were calibrated in a Co-60 radiation beam at the Secondary Standard Dosimetry Laboratory(SSDL) PINSTECH,Pakistan, following the IAEA TRS-398 protocol. The ratio of the measured absorbed doses to water in clinical setting,D_w(TG-51/TRS-398), was 0.999 and 0.997 for 6 and15 MV photon beams,whereas these ratios were 1.013,1.009, 1.003, and 1.000 for 6, 9, 12, and 15 MeV electron beams, respectively. This difference in the absorbed dosesto-water D_w ratio may be attributed mainly due to beam quality(K_Q) and ion recombination correction factor.
文摘X-ray-computed tomography (CT) has become one of the most important investigation procedures worldwide. The study aimed to assess image quality parameters, mainly noise, and radiation doses during abdominal examination. This study examined the diagnostic parameters (kilo voltage, tube current time product, slice thickness, and pitch) and their effects on image quality as well as the radiation doses received from computed tomography scanners using phantom. The study carried out in four CT centers in Sudan. The study applied prospective and experimental methods. The study demonstrated there was a linear correlation between diagnostic parameters and image noise. The reduction in milli-ampere second and peak kilo voltage increased the image noise. Moreover increasing the pitch led to an increase in the image noise, whereas increasing the slice thickness, reduced the image noise. There was also a linear relationship between kilo voltage and radiation dose at Elnileen diagnostic center characterized by an increase kilo voltages values which led to an increase in the radiation dose by 92% and a reduction in the image noise by 83%. However, at Antalya medical center, increasing in kilo voltage values led to an increase in the radiation dose by 35% and a reduction in the image noise by 26%. Also increasing in milli-ampere second values led to an increase in the radiation dose by 49% and a reduction in the image noise by 46% in a phantom compared with an increase in radiation dose by 82% and a reduction in the image noise by 51% in patients .The study found that an optimal protocol for adult abdominal scan at Antalya medical center was 4.22HU for image noise and 10.45 mGy for radiation dose when using 120 kVp, 300 mAs, 5 mm slice thickness and pitch of 0.8. At Elnileen diagnostic center, however, the optimal protocol was 5.4 HU for image noise and 5.4 mGy for radiation dose using 130 kVp, 50 mAs, 10 mm slice thickness and pitch of 2. In addition, the quality control tests for image quality parameters carried out at the two
文摘Medical diagnostic X-rays are the largest manmade source of ionizing radiation received by the members of the general public. The aim of this study was to evaluate the radiographic reject/repeat rate and also to determine dose to the patients from radiographic rejects/repeats in radiology centers of Urmia University of Medical Sciences. During a 4 month period the most frequently examinations were chosen in three radiology centers. A form was designed as a reject/repeat analysis form for radiographers to complete each time a film was rejected by radiologists or repeated. The collected data were compiled at the end of each week and entered into a computer for analysis at the end of study. The results of this study showed that highest and lowest repetition rates were for pelvis, 14.01% and upper limb, 4.17%, respectively. The main reasons of repetition of radiographs were due to exposure (54%) and positioning (18%) errors. The average repeat rate in all three hospitals was 7.20%. It was found that human error has important role to repetition of radiographs. It is demonstrated that those patients having repeated radiographs received an average of 3.23 Gy·cm2. Based on the findings of this study it must be remembered that the highest repetition rate was for pelvis. Considering the radiosensitive organs related to pelvis especially in pediatric patients some special considerations must be applied for pelvis examinations.