期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv4算法的水果识别检测研究 被引量:2
1
作者 裴瑞景 王硕 王华英 《激光技术》 CAS CSCD 北大核心 2023年第3期400-406,共7页
为了解决目前水果识别检测方法效率低、误检率高、通用性低、实时性差等问题,提出了一种基于改进的你只用看一遍(YOLO)统一框架的实时目标检测YOLOv4算法的水果识别检测方法。首先在主干网络的基础上增加高效通道注意力机制,增强网络提... 为了解决目前水果识别检测方法效率低、误检率高、通用性低、实时性差等问题,提出了一种基于改进的你只用看一遍(YOLO)统一框架的实时目标检测YOLOv4算法的水果识别检测方法。首先在主干网络的基础上增加高效通道注意力机制,增强网络提取图像语义信息能力;其次用内卷算子替换主干网络中跨级局部模块连接处卷积层,减小了模型大小,增强了网络预测性能;最后在路径聚合网络基础上添加残差模块,加快网络收敛速度的同时防止了网络梯度爆炸。数据集选取生活中常见的火龙果、橙子、葡萄、青芒等10种水果,拍摄共获得6670张图片。结果表明,本文中的方法均值平均精度(MAP)为99.1%,准确率为95.62%,传输帧数为41.67/s;MAP相比YOLOv4提升了15.3%。该研究满足高检测精度和检测速度要求,对水果识别精度的提高具有重要的参考价值。 展开更多
关键词 图像处理 水果识别 YOLOv4算法 内卷算子 路径聚合网络 高效通道注意网络
下载PDF
基于YOLOv4-Tiny结构的小目标实时检测优化算法
2
作者 于海洋 张钊 吕瑞宏 《海军航空大学学报》 2024年第4期429-436,474,共9页
文章针对小目标实时检测的实际应用需求,以YOLOv4-Tiny结构为基本框架,使用ECANet重新设计MobileNetV3的Bneck结构并替换主特征提取网络CSPDarkNet53-Tiny,以提高模型的深度和检测速度;通过在其主干网络输出接口后增加SPPCSPC模块和使... 文章针对小目标实时检测的实际应用需求,以YOLOv4-Tiny结构为基本框架,使用ECANet重新设计MobileNetV3的Bneck结构并替换主特征提取网络CSPDarkNet53-Tiny,以提高模型的深度和检测速度;通过在其主干网络输出接口后增加SPPCSPC模块和使用路径聚合网络(PAN)替换特征金字塔(FPN),增强模型的感受野,汇聚多区域上下文信息,使每个特征层得到更加充分的语义信息和位置信息;在Head后融入CBAM注意力机制,增强有用信息并抑制无用信息,提高模型的检测精度。以口罩佩戴状态实时监测来验证提出的算法,实验结果表明,与YOLOv4-Tiny结构相比,该算法平均精度提升4.13%,达到91.84%,FPS提升4.4 frame/s,达到89.5 frame/s,满足口罩佩戴状态检测的实时性要求。 展开更多
关键词 YOLOv4-Tiny结构 Bneck结构 SPPCSPC模块 路径聚合网络 CBAM注意力机制
下载PDF
基于改进YOLOv5及危险区域判断的碰撞预警系统研究
3
作者 衣振兴 詹振飞 +2 位作者 毛青 孙博文 王菊 《汽车技术》 CSCD 北大核心 2024年第4期1-6,共6页
为提升碰撞预警系统对周围环境的感知能力,提出一种基于YOLOv5及危险区域判断的碰撞预警系统。首先,通过通道注意力模块提高模型的判别能力和准确性,然后,使用路径聚合网络与空间金字塔池化提高模型对多尺度特征的提取能力,最后,通过引... 为提升碰撞预警系统对周围环境的感知能力,提出一种基于YOLOv5及危险区域判断的碰撞预警系统。首先,通过通道注意力模块提高模型的判别能力和准确性,然后,使用路径聚合网络与空间金字塔池化提高模型对多尺度特征的提取能力,最后,通过引入预警激活区域过滤相对安全的目标,提高了预警系统的预警精确度。结果表明,引入预警激活区域后,与无预警激活区域相比,预警系统的准确度、精度和召回率分别提高20%、50%和26.7%,运行速度提升49.1%,进一步证明了方法的有效性。 展开更多
关键词 YOLOv5 通道注意力模块 路径聚合网络 空间金字塔池化 预警激活区域 碰撞预警系统
下载PDF
基于改进YOLOv4的航空发动机小目标损伤检测研究 被引量:1
4
作者 蔡舒妤 闫子砚 《航空动力学报》 EI CAS CSCD 北大核心 2023年第2期445-452,共8页
智能化的航空发动机损伤检测是飞机故障诊断重要的研究方向,针对现有目标检测模型对航空发动机的小目标损伤检测效果差的问题,提出了一种改进的基于You Only Look Once version 4(YOLOv4)的多尺度目标检测方法。在路径聚合网络(PANet)... 智能化的航空发动机损伤检测是飞机故障诊断重要的研究方向,针对现有目标检测模型对航空发动机的小目标损伤检测效果差的问题,提出了一种改进的基于You Only Look Once version 4(YOLOv4)的多尺度目标检测方法。在路径聚合网络(PANet)中构建低层次的特征融合层,将更浅层的特征与深层特征融合,提高网络对小目标损伤的检测性能。为减少网络中的冗余参数,在颈部结构中引入了深度可分离卷积,将标准卷积重构为深度可分离卷积的形式。实验表明:改进后的YOLOv4对小目标损伤的检测精度提升了3.43%,模型大小降低了54.06 MB,同时检测速度提高了31.03%。研究结果表明改进的YOLOv4模型对小目标损伤具有更好的检测性能。 展开更多
关键词 小目标检测 路径聚合网络 多尺度特征融合 深度可分离卷积 YOLOv4模型
原文传递
基于混合路径聚合网络的点云目标识别
5
作者 梁正友 陈子奥 +1 位作者 蔡俊民 孙宇 《计算机工程与设计》 北大核心 2023年第11期3208-3213,共6页
针对目前点云目标识别通常强调提取点云数据中的语义特征,但是忽视了原始点云中的定位特征的问题,提出一种基于混合路径聚合网络的点云目标识别方法。使用改进的坐标注意力模块增强数据集的点云定位特征,设计一种混合路径聚合的残差特... 针对目前点云目标识别通常强调提取点云数据中的语义特征,但是忽视了原始点云中的定位特征的问题,提出一种基于混合路径聚合网络的点云目标识别方法。使用改进的坐标注意力模块增强数据集的点云定位特征,设计一种混合路径聚合的残差特征金字塔提取点云语义特征,将定位特征与语义特征融合。在KITTI数据集进行实验,可视化实验结果表明,该模型可以有效解决定位错误的问题,数据结果也表明该方法在KITTI点云数据集上的cyclist类别优于现有方法。 展开更多
关键词 点云目标识别 残差网络 特征融合 注意力机制 深度学习 金字塔网络 路径聚合网络
下载PDF
改进的FCOS煤矿井下行人检测算法 被引量:3
6
作者 延晓宇 董立红 +1 位作者 厍向阳 符立梅 《矿业研究与开发》 CAS 北大核心 2022年第4期160-165,共6页
针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金... 针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金字塔结构改进为自上而下和自下而上的路径增强网络,同时利用由两组深度可分离卷积组成的轻量化检测头替换原始FCOS网络的检测头。在试验训练过程中,通过对井下行人检测数据进行尺度和颜色等数据增强来提升模型的泛化能力与鲁棒性。试验结果显示,改进的FCOS可以更好地实现检测精度与速度之间的平衡,该算法在基本不损失精度的情况下,平均精度均值(mean Average Precision)达51.9%,检测速度可以达到100帧/s。 展开更多
关键词 井下行人检测 FCOS目标检测算法 ShuffleNet V2 路径增强网络 数据增强
原文传递
基于SE-YOLOV4的变电站断路器分合状态识别算法 被引量:1
7
作者 刘超 韩懈 《软件导刊》 2022年第9期40-44,共5页
针对高压变电站断路器人工检测速度慢、误差大等问题,提出基于YOLOv4改进的变电站断路器分合状态识别方法;针对电力系统背景复杂、断路器分合状态不易识别的问题,加入通道注意力机制,关注目标的显著性特征,忽略非目标区域,然后使用路径... 针对高压变电站断路器人工检测速度慢、误差大等问题,提出基于YOLOv4改进的变电站断路器分合状态识别方法;针对电力系统背景复杂、断路器分合状态不易识别的问题,加入通道注意力机制,关注目标的显著性特征,忽略非目标区域,然后使用路径聚合网络有效提取目标特征;针对数据样本单一性的问题,提出SE-YOLOv4算法,在其中加入数据增强技术,提高模型的泛化能力,使算法网络具有更强的鲁棒性。实验结果表明,该算法的精确率为97%,召回率为73.45%,F1为0.84,平均精确率为79.2%,相比原算法的平均精确率提高了2.6%,表明基于深度学习的检测方法可快速、高效地检测目标,避免人工检测出现的问题。 展开更多
关键词 断路器 深度学习 注意力机制 路径聚合网络
下载PDF
AS-PANet:改进路径增强网络的重叠染色体实例分割 被引量:19
8
作者 林成创 赵淦森 +3 位作者 尹爱华 丁笔超 郭莉 陈汉彪 《中国图象图形学报》 CSCD 北大核心 2020年第10期2271-2280,共10页
目的染色体是遗传信息的重要载体,健康的人体细胞中包含46条染色体,包括22对常染色体和1对性染色体。染色体核型化分析是产前诊断和遗产疾病诊断的重要且常用方法。染色体核型化分析是指从分裂中期的细胞显微镜图像中,分割出染色体并根... 目的染色体是遗传信息的重要载体,健康的人体细胞中包含46条染色体,包括22对常染色体和1对性染色体。染色体核型化分析是产前诊断和遗产疾病诊断的重要且常用方法。染色体核型化分析是指从分裂中期的细胞显微镜图像中,分割出染色体并根据染色体的条带进行分组排列的过程。染色体核型化分析通常由细胞学家手工完成,但是这个过程非常费时、繁琐且容易出错。由于染色体的非刚性特质,多条染色体之间存在重叠及交叉现象,致使染色体实例分割非常困难。染色体分割是染色体核型化分析过程中最重要且最困难的一步,因此本文旨在解决重叠、交叉染色体实例分割问题。方法本文基于路径增强网络(PANet)模型,提出AS-PANet(amount segmentation PANet)模型用于解决重叠染色体实例分割问题。在路径增强网络的基础上引入染色体计数领域知识预测作为模型的一个预测分支,并改进了路径增强网络的模型结构和损失函数,使图像分类、目标检测、实例分割和染色体计数4个子任务共享卷积特征,进行联合训练。在临床染色体图像数据上进行标注并构建训练集和测试集,同时提出有效的数据增广方法用以扩充染色体标注训练数据集,提升模型的训练效果。结果在临床染色体数据集中开展实证研究实验。实验结果表明,本文方法在临床染色体数据集中,平均分割精度mAP(mean average precision)为90.63%。该结果比PANet提升了1.18%,比基线模型Mask R-CNN提升了2.85%。分割准确率为85%,相比PANet提升了2%,相比Mask R-CNN(region with convolutional neural network)提升3.75%。结论本文染色体实例分割方法能够更有效地解决临床染色体分割问题,相比现有的方法,分割效果更好。 展开更多
关键词 AS-PANet 路径增强网络 染色体分割 实例分割 染色体核型分析
原文传递
MPANet-YOLOv5:多路径聚合网络复杂海域目标检测 被引量:12
9
作者 王文亮 李延祥 +2 位作者 张一帆 韩鹏 刘识灏 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第10期69-76,共8页
船舶智能化的发展对船舶视觉感知系统实时目标检测能力提出了更高要求,YOLOv5作为YOLO(You Only Look Once)系列算法的最新成果,以良好的速度和精度被广泛应用于海上目标检测.但在实际海上航行中往往伴随着多变的自然条件和复杂的活动场... 船舶智能化的发展对船舶视觉感知系统实时目标检测能力提出了更高要求,YOLOv5作为YOLO(You Only Look Once)系列算法的最新成果,以良好的速度和精度被广泛应用于海上目标检测.但在实际海上航行中往往伴随着多变的自然条件和复杂的活动场景,这使其在复杂海域中小目标检测能力和多目标分类效果并不理想.因此,为提升YOLOv5在复杂海域中目标检测能力,本文提出多路径聚合网络结构(MPANet).在自底向上特征传递过程中融合多层次特征信息以增强多尺度定位能力,同时结合SimAM注意力模块和Transformer结构增强高阶特征语义信息.在自定义数据集中实验结果表明:MPANet-YOLOv5相较于YOLOv5模型AP提升了5.4%,召回率提升了3.3%,AP0.5提升了3.3%,AP_(0.5:0.95)提升了2.2%,不同海域测试结果显示MPANet-YOLOv5海面小目标检测能力明显优于YOLOv5. 展开更多
关键词 目标检测 注意力机制 TRANSFORMER 船舶检测 多路径聚合网络
下载PDF
基于改进YOLOv5s的综采工作面人员检测算法 被引量:4
10
作者 张磊 李熙尉 +2 位作者 燕倩如 王浩盛 雷伟强 《中国安全科学学报》 CAS CSCD 北大核心 2023年第7期82-89,共8页
为了智能监控井工煤矿综采工作面危险区域人员闯入和安全帽佩戴问题,避免监控视频受粉尘干扰、光照不均等因素影响图像检测精度的问题,提出一种基于改进YOLOv5s的目标检测算法(简称YOLOv5s-DPE),并建立相关模型。首先,在颈部网络部分,... 为了智能监控井工煤矿综采工作面危险区域人员闯入和安全帽佩戴问题,避免监控视频受粉尘干扰、光照不均等因素影响图像检测精度的问题,提出一种基于改进YOLOv5s的目标检测算法(简称YOLOv5s-DPE),并建立相关模型。首先,在颈部网络部分,采用深度可分离卷积(DwConv)替换普通卷积,降低参数量和计算量;然后,引入改进的路径聚合网络(PANet)提升特征提取能力,替换边界框损失函数完全交并比(CIOU)为有效交并比(EIOU),提升检测准确率;最后,选取综采工作面视频中的人员图像进行检测,选取煤矿井下人员闯入和安全帽佩戴监控视频作为检测数据集,并进行训练和验证。结果表明:对比初始YOLOv5s算法模型,YOLOv5s-DPE算法模型的参数量下降14.2%,浮点数计算量下降7.6%,算法网络模型大小下降12.5%,均值平均精度(mAP)@0.5提升到93.7%,mAP@0.5∶0.95提升到65.8%,YOLOv5s-DPE模型对小目标检测效果更好,误检漏检等情况有所减少。 展开更多
关键词 YOLOv5s 综采工作面 检测算法 深度可分离卷积(DwConv) 有效交并比(EIOU) 路径聚合网络(PANet)
下载PDF
基于改进YOLOX的交通标志检测与识别 被引量:5
11
作者 陈民 吴观茂 《现代信息科技》 2022年第2期101-103,106,共4页
现实中交通标志的检测和识别具有环境多变的特点,交通标志长时间暴露在外经常会出现损坏情况,对检测的精度和速度产生较大影响。利用最新的YOLO系列算法——YOLOX,对网络结构的加强特征提取层进行改进,引入OPA-FPN网络,相较于原来的PANe... 现实中交通标志的检测和识别具有环境多变的特点,交通标志长时间暴露在外经常会出现损坏情况,对检测的精度和速度产生较大影响。利用最新的YOLO系列算法——YOLOX,对网络结构的加强特征提取层进行改进,引入OPA-FPN网络,相较于原来的PANet网络,后者精度提升2.2%。在交通标志识别过程,对经典的卷积神经网络模型LeNet-5进行改进,在数据集TT100K中进行实验,相较于其他交通标志识别模型,使用改进的模型可以使识别正确率提升2.31%,识别时间减少了13.02 ms。 展开更多
关键词 单步路径聚合网络 YOLO 卷积神经网络 FPN LeNet-5
下载PDF
融合路径聚合网络的Swin Transformer的故障诊断方法研究
12
作者 刘晨宇 李志农 +1 位作者 熊鹏伟 谷丰收 《振动与冲击》 EI CSCD 北大核心 2024年第18期258-266,共9页
针对Transformer在航空发动机故障诊断中存在空间信息特征建模能力不足、计算复杂度较高的问题,提出一种基于路径聚合网络的Swin Transformer的故障诊断方法。该方法将路径聚合网络嵌入到Swin Transformer网络中,提高模型多尺度融合特... 针对Transformer在航空发动机故障诊断中存在空间信息特征建模能力不足、计算复杂度较高的问题,提出一种基于路径聚合网络的Swin Transformer的故障诊断方法。该方法将路径聚合网络嵌入到Swin Transformer网络中,提高模型多尺度融合特征金字塔顶层信息和底层信息的效率,并采用窗口多头自注意力模块和移动窗口多头自注意力模块,有效降低提取空间信息特征的计算复杂度,并促进信息的流动和特征的传递。最后,将提出的方法应用到航空发动机滚动轴承故障诊断中。试验结果表明,提出的方法明显优于Transformer和传统Swin Transformer方法,在保证识别精度的同时,提高了模型的识别速度。 展开更多
关键词 故障诊断 Swin Transformer 路径聚合网络 航空发动机 滚动轴承
下载PDF
小样本条件下的带钢表面缺陷检测
13
作者 宋文琦 吴龙 黎尧 《计算机系统应用》 2024年第5期85-93,共9页
针对工业场景下带钢表面缺陷样本少、缺陷尺寸大小不一等问题,提出一种适用于小样本条件下的带钢表面缺陷检测网络.首先,算法以YOLOv5s框架为基础,设计一种融合注意力机制的多尺度路径聚合网络作为模型的颈部,增强模型对缺陷目标的多尺... 针对工业场景下带钢表面缺陷样本少、缺陷尺寸大小不一等问题,提出一种适用于小样本条件下的带钢表面缺陷检测网络.首先,算法以YOLOv5s框架为基础,设计一种融合注意力机制的多尺度路径聚合网络作为模型的颈部,增强模型对缺陷目标的多尺度预测能力;其次,提出一种自适应解耦检测结构,缓解小样本情况下分类和定位任务之间的矛盾;最后,提出一种融合Wasserstein距离的边界框回归损失函数,提升模型对小目标缺陷的检测精度.实验表明,在构建的小样本带钢表面缺陷数据集上,本文模型的检测性能优于其他小样本检测模型,更适用于工业环境下的小样本缺陷检测任务. 展开更多
关键词 钢材表面缺陷检测 小样本 注意力机制 多尺度路径聚合网络 解耦检测结构
下载PDF
基于改进RetinaNet-GHM算法的钢板表面缺陷检测 被引量:2
14
作者 李雪露 杨永辉 储茂祥 《电子测量技术》 北大核心 2023年第6期100-105,共6页
针对传统钢板表面缺陷检测方法效果差、缺陷定位不准确等问题,提出一种基于改进RetinaNet-GHM的深度学习检测算法。首先,引入路径聚合特征金字塔网络融合浅层和深层语义信息,提升网络对小目标的检测效果;然后,使用GHMC和GHMR损失函数对... 针对传统钢板表面缺陷检测方法效果差、缺陷定位不准确等问题,提出一种基于改进RetinaNet-GHM的深度学习检测算法。首先,引入路径聚合特征金字塔网络融合浅层和深层语义信息,提升网络对小目标的检测效果;然后,使用GHMC和GHMR损失函数对缺陷进行分类和定位;最后,引入高斯形式的软化非极大值抑制算法,提高检测精度。实验结果表明,改进的RetinaNet-GHM算法的平均精度均值为76.7%,裂纹、夹杂、斑块、麻点、压入氧化铁皮以及划痕六类缺陷的平均精度分别为45.2%、88.2%、94.2%、86.1%、65.1%和87.4%。通过与其他经典算法相比,改进的RetinaNet-GHM算法具有较好的检测效果. 展开更多
关键词 目标检测 路径聚合特征金字塔网络 GHM损失函数 软化非极大值抑制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部