The strength of titanium scaffolds with the introduction of high porosity decreases dramatically and may become inadequate for load bearing in biomedical applications.To simultaneously meet the requirements of biocomp...The strength of titanium scaffolds with the introduction of high porosity decreases dramatically and may become inadequate for load bearing in biomedical applications.To simultaneously meet the requirements of biocompatibility,low elastic modulus and appropriate strength for orthopedic implant materials,it is highly desirable to develop new biocompatible titanium based materials with enhanced strength.In this study,we developed a niobium pentoxide(Nb2O5)reinforced titanium composite via powder metallurgy for biomedical applications.The strength of the Nb2O5 reinforced titanium composites(Ti-Nb2O5)is significantly higher than that of pure titanium.Cell culture results revealed that the Ti-Nb2O5 composite exhibits excellent biocompatibility and cell adhesion.Human osteoblast-like cells grew and spread healthily on the surface of the Ti-Nb2O5 composite.Our study demonstrated that Nb2O5 reinforced titanium composite is a promising implant material by virtue of its high mechanical strength and excellent biocompatibility.展开更多
基金This research is financially supported by the National Health and Medical Research Council(NHMRC)through GNT1087290.
文摘The strength of titanium scaffolds with the introduction of high porosity decreases dramatically and may become inadequate for load bearing in biomedical applications.To simultaneously meet the requirements of biocompatibility,low elastic modulus and appropriate strength for orthopedic implant materials,it is highly desirable to develop new biocompatible titanium based materials with enhanced strength.In this study,we developed a niobium pentoxide(Nb2O5)reinforced titanium composite via powder metallurgy for biomedical applications.The strength of the Nb2O5 reinforced titanium composites(Ti-Nb2O5)is significantly higher than that of pure titanium.Cell culture results revealed that the Ti-Nb2O5 composite exhibits excellent biocompatibility and cell adhesion.Human osteoblast-like cells grew and spread healthily on the surface of the Ti-Nb2O5 composite.Our study demonstrated that Nb2O5 reinforced titanium composite is a promising implant material by virtue of its high mechanical strength and excellent biocompatibility.