The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a...The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.展开更多
A novel triaxial vibration method is developed for the real-time characterization of the solid particle size distribution(PsD)in pneumatic particulate flow,which is critical for chemical industry.In this work,the part...A novel triaxial vibration method is developed for the real-time characterization of the solid particle size distribution(PsD)in pneumatic particulate flow,which is critical for chemical industry.In this work,the particle-wall collision and friction behaviours were analysed by the time-domain statistical and timefrequency joint methods to narrow the high-frequency response range by the initial experiment of free fall for a single particle,interparticle,and multiple particles.Subsequently,verification experiments of PSD characterization in pneumatic flow were performed.First,the quantitative triaxial energy response model that considers the particle size,shape,and mass factors were established.Second,a good agreement of the particle number identification was found between the triaxial vibration energy and mean particle size of 150-550μm.Moreover,the performance with the best accuracy was focused on a range of 42-43 kHz in the x-axis and z-axis and 36.8-38.8 kHz in the y-axis.Finally,the individual particle energy was inversely analysed by the triaxial vibration response within the optimized frequency bands,and the PSD was characterized in real-time by a low error rate,that is,5.2% from the XZ-axis direction of sand(42-43 kHz)and 5.6% from the XYZ-axis of glass(30.9-33.9 kHz,46.2-47.2 kHz,38.3-41.3 kHz for each axis response).Therefore,this research complements the existing approaches for PsD characterization in particulate multiphase flow.展开更多
A fluid-structure interaction method based on the arbitrary Lagrangian-Eulerian method and a dynamic mesh method was developed to simulate the dynamics of a rigid particle in shear flows.In the method,the governing eq...A fluid-structure interaction method based on the arbitrary Lagrangian-Eulerian method and a dynamic mesh method was developed to simulate the dynamics of a rigid particle in shear flows.In the method,the governing equations for the fluid flow and particle motion were sequentially solved in a two-way coupling fashion.The mesh system was deformed or re-meshed by the dynamic mesh method.The method was employed to simulate the dynamics of a single particle suspended in a flow channel and the dynamics of the particle were studied.The simulation results show that the angular velocity is not only a function of the inclination angle,is but also influenced by the aspect ratio yielding a hysteresis,while the angular velocity obtained from the Keller-Scalak model is a function only of the inclination angle and does not show a hysteresis.The present simulations clearly demonstrate that the Fluid-Structure Interaction(FSI) module is very stable,accurate and robust.展开更多
Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle wave...Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle waves and particle aggregates exists along bed height.The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization.The existence time fractions and frequencies of particle aggregates are predicted along axial direction.The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds.Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide ve-locities.The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.展开更多
We have analyzed the kinetics of solid circular particles interacting with fluid,outer boundary and internal square shaped obstacles tilted at a 45°angle.The effects on the motion of particle due to collision wit...We have analyzed the kinetics of solid circular particles interacting with fluid,outer boundary and internal square shaped obstacles tilted at a 45°angle.The effects on the motion of particle due to collision with obstacles and wall are inspected.An Eulerian approach is used to study the behavior of particle in the fixed computational mesh.The interactions between fluid,particles and obstacles have been carried out in the whole domain by using fictitious boundary method(FBM).In this work,the particulate flow simulations are computed by using finite element solver FEATFLOW.Numerical results are presented by assigning different alignments to the obstacles and varying their positions in the domain.Particle-wall,particle-particle and particleobstacle collisions are treated by applying a modified collision model proposed by Glowinski et al.The rapid change in drag forces acting on obstacles due to nearby passing particles and its effect on the fluid motion has been investigated.展开更多
An improved implementation of distributed multiplier/fictitious domain method is presented for the direct numerical simulation of particulate flow. The key improvement is to replace a finite element triangulation for...An improved implementation of distributed multiplier/fictitious domain method is presented for the direct numerical simulation of particulate flow. The key improvement is to replace a finite element triangulation for the velocity and a “twice coarser' triangulation for the pressure with a rectangular discretization for the velocity and pressure. For code validation, the sedimentation of a single particle in a two dimensional channel was simulated. The results showed that the simulation is independent of the mesh size as well as the time step. The comparison between experimental data and this simulation showed that our code can give a more accurate simulation on the motion of particles than previous DLM code. The code was then applied to simulate the sedimentation of 600 particles in a rectangular box. The falling course is presented and discussed. At the same time, this simulation also demonstrates that the method presented in this paper can be used for solving the initial problems involving a lager number of particles exactly with computing durations kept at acceptable levels.展开更多
A boundary condition-enforced immersed boundary-lattice Boltzmannmethod (IB-LBM) for the simulation of particulate flows is presented in this paper. Ingeneral, the immersed boundary method (IBM) utilizes a discrete se...A boundary condition-enforced immersed boundary-lattice Boltzmannmethod (IB-LBM) for the simulation of particulate flows is presented in this paper. Ingeneral, the immersed boundary method (IBM) utilizes a discrete set of force densityto represent the effect of boundary. In the conventional IB-LBM, such force density ispre-determined, which cannot guarantee exact satisfaction of non-slip boundary condition. In this study, the force density is transferred to the unknown velocity correctionwhich is determined by enforcing the non-slip boundary condition. For the particulateflows, accurate calculation of hydrodynamic force exerted on the boundary of particlesis of great importance as it controls the motion of particles. The capability of presentmethod for particulate flows is depicted by simulating migration of one particle in asimple shear flow and sedimentation of one particle in a box and two particles in achannel. The expected phenomena and numerical results are achieved. In addition,particle suspension in a 2D symmetric stenotic artery is also simulated.展开更多
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
基金Funding support from Heilongjiang"Open Competition"project(Grant No.DQYT2022-JS-758)is greatly acknowledgedFinancial support from the National Natural Science Foundation of China(Grant Nos.52304025 and 52174025)is acknowledged+1 种基金supports from Northeast Petroleum University and Guangdong Basic and Applied Basic Research Foundationsupport from the Heilongjiang Touyan Innovation Team Program.
文摘The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.
基金supported by Shandong Provincial Natural Science Foundation(grant No.ZR2021ME001)the National Natural Science Foundation of China(grant No.52104015).
文摘A novel triaxial vibration method is developed for the real-time characterization of the solid particle size distribution(PsD)in pneumatic particulate flow,which is critical for chemical industry.In this work,the particle-wall collision and friction behaviours were analysed by the time-domain statistical and timefrequency joint methods to narrow the high-frequency response range by the initial experiment of free fall for a single particle,interparticle,and multiple particles.Subsequently,verification experiments of PSD characterization in pneumatic flow were performed.First,the quantitative triaxial energy response model that considers the particle size,shape,and mass factors were established.Second,a good agreement of the particle number identification was found between the triaxial vibration energy and mean particle size of 150-550μm.Moreover,the performance with the best accuracy was focused on a range of 42-43 kHz in the x-axis and z-axis and 36.8-38.8 kHz in the y-axis.Finally,the individual particle energy was inversely analysed by the triaxial vibration response within the optimized frequency bands,and the PSD was characterized in real-time by a low error rate,that is,5.2% from the XZ-axis direction of sand(42-43 kHz)and 5.6% from the XYZ-axis of glass(30.9-33.9 kHz,46.2-47.2 kHz,38.3-41.3 kHz for each axis response).Therefore,this research complements the existing approaches for PsD characterization in particulate multiphase flow.
文摘A fluid-structure interaction method based on the arbitrary Lagrangian-Eulerian method and a dynamic mesh method was developed to simulate the dynamics of a rigid particle in shear flows.In the method,the governing equations for the fluid flow and particle motion were sequentially solved in a two-way coupling fashion.The mesh system was deformed or re-meshed by the dynamic mesh method.The method was employed to simulate the dynamics of a single particle suspended in a flow channel and the dynamics of the particle were studied.The simulation results show that the angular velocity is not only a function of the inclination angle,is but also influenced by the aspect ratio yielding a hysteresis,while the angular velocity obtained from the Keller-Scalak model is a function only of the inclination angle and does not show a hysteresis.The present simulations clearly demonstrate that the Fluid-Structure Interaction(FSI) module is very stable,accurate and robust.
基金funded by National Natural Science Foundation of China under the Grant No.51776059 and Key R&D Program of China Construction Second Engineering Bureau Co.Ltd.(Grant No.2021ZX180001).
文摘Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle waves and particle aggregates exists along bed height.The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization.The existence time fractions and frequencies of particle aggregates are predicted along axial direction.The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds.Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide ve-locities.The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.
文摘We have analyzed the kinetics of solid circular particles interacting with fluid,outer boundary and internal square shaped obstacles tilted at a 45°angle.The effects on the motion of particle due to collision with obstacles and wall are inspected.An Eulerian approach is used to study the behavior of particle in the fixed computational mesh.The interactions between fluid,particles and obstacles have been carried out in the whole domain by using fictitious boundary method(FBM).In this work,the particulate flow simulations are computed by using finite element solver FEATFLOW.Numerical results are presented by assigning different alignments to the obstacles and varying their positions in the domain.Particle-wall,particle-particle and particleobstacle collisions are treated by applying a modified collision model proposed by Glowinski et al.The rapid change in drag forces acting on obstacles due to nearby passing particles and its effect on the fluid motion has been investigated.
基金TheNationalNaturalSciencesFoundationforOutstandingYouthofChina (No .19925210)andZhejiangProvincialNaturalScienceFoundationofChina(No .10 10 4 7)
文摘An improved implementation of distributed multiplier/fictitious domain method is presented for the direct numerical simulation of particulate flow. The key improvement is to replace a finite element triangulation for the velocity and a “twice coarser' triangulation for the pressure with a rectangular discretization for the velocity and pressure. For code validation, the sedimentation of a single particle in a two dimensional channel was simulated. The results showed that the simulation is independent of the mesh size as well as the time step. The comparison between experimental data and this simulation showed that our code can give a more accurate simulation on the motion of particles than previous DLM code. The code was then applied to simulate the sedimentation of 600 particles in a rectangular box. The falling course is presented and discussed. At the same time, this simulation also demonstrates that the method presented in this paper can be used for solving the initial problems involving a lager number of particles exactly with computing durations kept at acceptable levels.
文摘A boundary condition-enforced immersed boundary-lattice Boltzmannmethod (IB-LBM) for the simulation of particulate flows is presented in this paper. Ingeneral, the immersed boundary method (IBM) utilizes a discrete set of force densityto represent the effect of boundary. In the conventional IB-LBM, such force density ispre-determined, which cannot guarantee exact satisfaction of non-slip boundary condition. In this study, the force density is transferred to the unknown velocity correctionwhich is determined by enforcing the non-slip boundary condition. For the particulateflows, accurate calculation of hydrodynamic force exerted on the boundary of particlesis of great importance as it controls the motion of particles. The capability of presentmethod for particulate flows is depicted by simulating migration of one particle in asimple shear flow and sedimentation of one particle in a box and two particles in achannel. The expected phenomena and numerical results are achieved. In addition,particle suspension in a 2D symmetric stenotic artery is also simulated.