Concern over the health effects of fine particles in the ambient environment led the U.S. Environmental Protection Agency to develop the first standard for PM2.5 (particulate matter less than 2.5 μm) in 1997. The P...Concern over the health effects of fine particles in the ambient environment led the U.S. Environmental Protection Agency to develop the first standard for PM2.5 (particulate matter less than 2.5 μm) in 1997. The Particle Technology Laboratory at the University of Minnesota has helped to establish the PM2.5 standard by developing many instruments and samplers to perform atmospheric measurements. In this paper, we review various aspects of PM2.5, including its measurement, source apportionment, visibility and health effects, and mitigation. We focus on PM2.s studies in China and where appropriate, compare them with those obtained in the U.S. Based on accurate PM2.5 sampling, chemical analysis, and source apportionment models, the major PM2.5 sources in China have been identified to be coal combustion, motor vehicle emissions, and industrial sources. Atmospheric visibility has been found to correlate well with PM2.s concentration. Sulfate, ammonium, and nitrate carried by PM2.s, commonly found in coal burning and vehicle emissions, are the dominant contributors to regional haze in China. Short-term exposure to PM2.s is strongly associated with the increased risk of morbidity and mortality from cardiovascular and respiratory diseases in China. The strategy for PMzs mitigation must be based on reducing the pollutants from the two primary sources of coal-fired power plants and vehicle emissions. Although conventional Particulate Emission Control Devices (PECD) such as electrostatic precipitators in Chinese coal-fired power plants are generally effective for large particles, most of them may not have high collection efficiency of PM2.5. Baghouse filtration is gradually incorporated into the PECD to increase the PM2.5 collection efficiency. By adopting stringent vehicle emissions standard such as Euro 5 and 6, the emissions from vehicles can be gradually reduced over the years. An integrative approach, from collaboration among academia, government, and industries, can effectively manage and mitigate the PM2.s p展开更多
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the ...The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.展开更多
可塑性面积单元问题(modifiable areal unit problem,MAUP)效应是对空间数据分析结果产生不确定性影响的主要原因之一,在空间自相关分析中也不例外。本文分别利用网格模拟数据和中国人均GDP实例数据为数据源,以全局Moran's I系数来...可塑性面积单元问题(modifiable areal unit problem,MAUP)效应是对空间数据分析结果产生不确定性影响的主要原因之一,在空间自相关分析中也不例外。本文分别利用网格模拟数据和中国人均GDP实例数据为数据源,以全局Moran's I系数来探究空间自相关统计中的MAUP效应,分析结果表明,变量的空间自相关程度依赖于空间的粒度大小与单元的划分方法,但空间单元的变化与自相关性并不存在某种函数关系。因此,在进行空间自相关研究时必须选择合适的地理单元的粒度大小和分区。最后本文给出一种基于地统计内插方法来降低MAUP对空间自相关分析影响。展开更多
The recently built China Digital Seismic Network consists of the China National Digital Seismic Network (CNDSN), 31 regional seismic networks and several small aperture arrays with more than 1 000 stations including...The recently built China Digital Seismic Network consists of the China National Digital Seismic Network (CNDSN), 31 regional seismic networks and several small aperture arrays with more than 1 000 stations including 850+ broadband stations. It forms a gigantic seismic array that provides an unprecedented opportunity to study the Earth's deep interior besides its routine task of seismic monitoring. Many modern seismic studies rely on rotation of vertical and horizontal components in order to separate different types of seismic waves. Knowledge of the orientations of the two horizontal components thus is important to perform a correction rotation. We analyzed particle motions of teleseismic P waves recorded by the network and used them to estimate the northcomponent azimuth of each station. An SNR-weighted-multi-event method was introduced to obtain component azimuths that best explain the P-wave particle motions of all the events recorded at a station. The method provides robust estimates including a measurement error calculated from background noise levels. We found that about one third of the stations have some sort of problems, including misorientation of the two horizontal components, mislabeling and polarity reversal in one or more components. These problems need to be taken into account for any rotation based seismic studies.展开更多
文摘Concern over the health effects of fine particles in the ambient environment led the U.S. Environmental Protection Agency to develop the first standard for PM2.5 (particulate matter less than 2.5 μm) in 1997. The Particle Technology Laboratory at the University of Minnesota has helped to establish the PM2.5 standard by developing many instruments and samplers to perform atmospheric measurements. In this paper, we review various aspects of PM2.5, including its measurement, source apportionment, visibility and health effects, and mitigation. We focus on PM2.s studies in China and where appropriate, compare them with those obtained in the U.S. Based on accurate PM2.5 sampling, chemical analysis, and source apportionment models, the major PM2.5 sources in China have been identified to be coal combustion, motor vehicle emissions, and industrial sources. Atmospheric visibility has been found to correlate well with PM2.s concentration. Sulfate, ammonium, and nitrate carried by PM2.s, commonly found in coal burning and vehicle emissions, are the dominant contributors to regional haze in China. Short-term exposure to PM2.s is strongly associated with the increased risk of morbidity and mortality from cardiovascular and respiratory diseases in China. The strategy for PMzs mitigation must be based on reducing the pollutants from the two primary sources of coal-fired power plants and vehicle emissions. Although conventional Particulate Emission Control Devices (PECD) such as electrostatic precipitators in Chinese coal-fired power plants are generally effective for large particles, most of them may not have high collection efficiency of PM2.5. Baghouse filtration is gradually incorporated into the PECD to increase the PM2.5 collection efficiency. By adopting stringent vehicle emissions standard such as Euro 5 and 6, the emissions from vehicles can be gradually reduced over the years. An integrative approach, from collaboration among academia, government, and industries, can effectively manage and mitigate the PM2.s p
基金supported by National Natural Science Foundation of China (Grant No. 21076198)Zhejiang Provincial Natural Science Foundation of China (Granted No. R1100530)National Basic Research Program of China (973 Program,Grant No. 2009CB724303)
文摘The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.
文摘可塑性面积单元问题(modifiable areal unit problem,MAUP)效应是对空间数据分析结果产生不确定性影响的主要原因之一,在空间自相关分析中也不例外。本文分别利用网格模拟数据和中国人均GDP实例数据为数据源,以全局Moran's I系数来探究空间自相关统计中的MAUP效应,分析结果表明,变量的空间自相关程度依赖于空间的粒度大小与单元的划分方法,但空间单元的变化与自相关性并不存在某种函数关系。因此,在进行空间自相关研究时必须选择合适的地理单元的粒度大小和分区。最后本文给出一种基于地统计内插方法来降低MAUP对空间自相关分析影响。
基金supported by NSF grant EAR-063566(F.N.)National Natural Science Foundation of China grant 40774042(J.L.)
文摘The recently built China Digital Seismic Network consists of the China National Digital Seismic Network (CNDSN), 31 regional seismic networks and several small aperture arrays with more than 1 000 stations including 850+ broadband stations. It forms a gigantic seismic array that provides an unprecedented opportunity to study the Earth's deep interior besides its routine task of seismic monitoring. Many modern seismic studies rely on rotation of vertical and horizontal components in order to separate different types of seismic waves. Knowledge of the orientations of the two horizontal components thus is important to perform a correction rotation. We analyzed particle motions of teleseismic P waves recorded by the network and used them to estimate the northcomponent azimuth of each station. An SNR-weighted-multi-event method was introduced to obtain component azimuths that best explain the P-wave particle motions of all the events recorded at a station. The method provides robust estimates including a measurement error calculated from background noise levels. We found that about one third of the stations have some sort of problems, including misorientation of the two horizontal components, mislabeling and polarity reversal in one or more components. These problems need to be taken into account for any rotation based seismic studies.