This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is ...This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is based on a 3D grid that stores a fixed set of irradiance vectors.During preprocessing,this representation can be built using almost any existing global illumination software.During rendering,the indirect illumination within a voxel is interpolated from its associated irradiance vectors,and is used as additional local light sources.Compared with other techniques,the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene.We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.展开更多
基金supported by the Lavoisier Grant from French Ministry of Foreign Affairs.Xavier Granier is supported by the Open Project Program of the State Key Lab of CAD&CG,Zhejiang University under Grant No.A1007.
文摘This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is based on a 3D grid that stores a fixed set of irradiance vectors.During preprocessing,this representation can be built using almost any existing global illumination software.During rendering,the indirect illumination within a voxel is interpolated from its associated irradiance vectors,and is used as additional local light sources.Compared with other techniques,the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene.We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.