期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Prediction of coal structure using particle size characteristics of coalbed methane well cuttings 被引量:3
1
作者 Shuaifeng Lv Shengwei Wang +3 位作者 Rui Li Guoqing Li Ming Yuan Jiacheng Wang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期209-216,共8页
Severely deformed coal seams barely deliver satisfactory gas production. This research was undertaken to develop a new method to predict the positions of deformed coals for a horizontal CBM well. Firstly, the drilling... Severely deformed coal seams barely deliver satisfactory gas production. This research was undertaken to develop a new method to predict the positions of deformed coals for a horizontal CBM well. Firstly, the drilling cuttings of different structure coals were collected from a coal mine and compared. In light of the varying cuttings characteristics for different structure coals, the coal structure of the horizontally drilled coal seam was predicted. And the feasibility of this prediction method was discussed. The result shows that exogenetic fractures have an important influence on the deformation of coal seams. The hardness coefficient of coal decreases with the deformation degree in the order of primary structural, cataclastic and fragmented coal. And the expanding-ratio of gas drainage holes and the average particle size of cuttings increase with the increase of the deformation degree. The particle size distribution of coal cuttings for the three types of coals is distinctive from each other. Based on the particle size distribution of cuttings from X-2 well in a coal seam, six sections of fragmented coal which are unsuitable for perforating are predicted. This method may benefit the optimization of perforation and fracturing of a horizontal CBM well in the study area. 展开更多
关键词 coal structure Gas drainage BOREHOLES particle size distribution of coal cuttings Directional CBM WELL Optimization of PERFORATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部