In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c...In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.展开更多
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is...This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively.展开更多
文摘In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.
文摘This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively.
基金supported by the High-Level Personnel Fund of Xiamen University of Technology(Grant No.YKJ15031R)the Graduate Innovation Fund of Shanghai University of Finance and Economics(Grant No.CXJJ-2013-459)