为了研究不同纳米添加物对聚酰亚胺(polyimide,PI)电气性能的影响,采用原位聚合法制备了纯PI薄膜、PI质量分数10%的PI/SiO_2和PI/Al_2O_3纳米复合薄膜,测试其电导率(表面、体积电导率)、介电频谱、方波脉冲下的局部放电以及耐电晕性能,...为了研究不同纳米添加物对聚酰亚胺(polyimide,PI)电气性能的影响,采用原位聚合法制备了纯PI薄膜、PI质量分数10%的PI/SiO_2和PI/Al_2O_3纳米复合薄膜,测试其电导率(表面、体积电导率)、介电频谱、方波脉冲下的局部放电以及耐电晕性能,并用SEM观察击穿点周围的表面形貌。结果表明:PI/SiO_2膜的电导率大于PI/Al_2O_3膜,其中表面电导率是PI/Al_2O_3膜的6倍;PI/Al_2O_3膜、PI/SiO_2膜、PI膜的介电常数依次降低;PI/SiO_2膜和纯PI膜的介电损耗角正切值(tanδ)随频率的增加先减小后增大,PI/Al_2O_3膜的tanδ值在6 k Hz后最大;由于空间电荷弛豫,PI/Al_2O_3膜的tanδ值在0.02Hz左右出现了一个峰值;另外,因为电荷扩散能力不同,PI/SiO_2膜、PI/Al_2O_3膜以及PI膜的局部放电起始电压和耐电晕时间依次减小,而局部放电的平均幅值则依次增大;电晕放电使得3种薄膜表面都形成了很多微孔、裂纹,纳米复合薄膜表面出现块状物。研究结果表明:复合薄膜中界面体积分数和纳米粒子极性,是造成PI/SiO_2薄膜和PI/Al_2O_3薄膜电气性能差异的主要原因。展开更多
Southern corn rust is one of destructive diseases in maize caused by Puccinia polysora Undrew. A mapping population of tropical sweet corn recombinant inbred lines (RILs) derived from a cross between hA9104 and hA9035...Southern corn rust is one of destructive diseases in maize caused by Puccinia polysora Undrew. A mapping population of tropical sweet corn recombinant inbred lines (RILs) derived from a cross between hA9104 and hA9035 inbred lines were set up to detect quantitative trait loci (QTLs) involved in partial resistance to southern corn rust. Eighty nine RILs were used to evaluate resistance levels using nine-point relative scale (1-9) at Sweet Seeds, Suwan Farm, Thailand include combined analysis. A genetic linkage map was constructed with 157 SSR markers, with a total length of 2123.1 cM, covering 10 chromosomes. Broad-sense heritability of individual location ranged from 0.76 and 0.82 and combined across locations was 0.87. Multiple QTL mapping (MQM) was applied for the identification of the QTLs. Fifteen QTLs were detected on chromosome 1, 2, 5, 6, 9 and 10 in both locations and combined across locations. QTLs on chromosome 1, 5 and 6 were contributed by alleles of resistant parent hA9104 while others were contributed by alleles from the susceptible parent, hA9035. Phenotypic variance of each QTL explained ranged from 6.1% to 41.8% with a total of 69.8% - 81.9%. QTL on chromosome 1, 6 and 10 were stable QTLs detected in both locations.展开更多
In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C com...In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C composites, and then MoSi2 and SiC were subsequently prepared in a CVI /CVR process using methyltrichlorosilane (MTS) as precursor. The deposition and reaction mechanism of the MoSi2-SiC composite coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The oxidation behavior of SiC-MoSi2 coated specimens was tested. The results show that the porous Mo layer can be densified with SiC phase decomposed from MTS, and transformed into SiC-MoSi2 by reacting with MTS as well. A dense composite coating was prepared with optimized deposition parameters. The coated specimen exhibits a good oxidation resistance with a little mass loss of 1.25% after oxidation at 1500 °C for 80 h.展开更多
The gene RB is derived from the wild potato species S. bulbocastanum and confers partial resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. In order to investigate whether a single stra...The gene RB is derived from the wild potato species S. bulbocastanum and confers partial resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. In order to investigate whether a single strain of P. infestans can adapt to overcome this partial resistance source, we subjected RB containing leaflets to multiple rounds of infection with P. infestans, with a culture isolated from a lesion used to infect the next leaflet (a passage). A parallel line of passages was done using susceptible leaflets as hosts. At the end of the experiment, P. infestans strains passaged through resistant or susceptible leaflets were compared for infection efficiency and lesion size. Variants of the P. infestans effector family IPI-O, some of which are recognized by the RB protein to elicit resistance, were cloned and sequenced to determine whether variation occurred during selection on the partially resistant host. Our results show that after 20 rounds of selection, no breakdown in RB resistance took place. In fact, the strain that was continually passaged through the partially resistant host produced smaller lesions on susceptible leaflets and had a lower infection frequency than the strain passaged through susceptible cultivar Katahdin. No changes within IPI-O coding regions were detected after selection on the hosts with RB. Our results indicate that individual strains of P. infestans are not capable of rapidly overcoming RB resistance even when it is the only host available.展开更多
The wild relatives of wheat (Triticum aestivum L.) contain tremendous amounts of potentially useful genes and represent a promising source of genetic diversity for wheat improvement (Bommineni and Jauhar, 1997). T...The wild relatives of wheat (Triticum aestivum L.) contain tremendous amounts of potentially useful genes and represent a promising source of genetic diversity for wheat improvement (Bommineni and Jauhar, 1997). Thinopyrum ponticum (Popd.) Barkworth and D. R. Dewey [syn. Agropyron elongatum (Host) P. Beauv., Elytrigia pontica (Podp.) Holub, Lophopy- rum ponticum (Podp.) A. L6ve] (2n = 10x = 70), has high crossability with various Triticum species. Numerous studies have shown that Th. ponticum carries many potentially valu- able resistance genes against biotic and abiotic stresses (Shannon, 1978; Cox, 1991; Zheng et al., 2014a,b). Transferring the useful genes from Th. ponticum to common wheat through chromosome engineering had been a successful way to enhance the resistance of wheat to pests and diseases (Sharma et al., 1989; McIntosh, 1991).展开更多
文摘为了研究不同纳米添加物对聚酰亚胺(polyimide,PI)电气性能的影响,采用原位聚合法制备了纯PI薄膜、PI质量分数10%的PI/SiO_2和PI/Al_2O_3纳米复合薄膜,测试其电导率(表面、体积电导率)、介电频谱、方波脉冲下的局部放电以及耐电晕性能,并用SEM观察击穿点周围的表面形貌。结果表明:PI/SiO_2膜的电导率大于PI/Al_2O_3膜,其中表面电导率是PI/Al_2O_3膜的6倍;PI/Al_2O_3膜、PI/SiO_2膜、PI膜的介电常数依次降低;PI/SiO_2膜和纯PI膜的介电损耗角正切值(tanδ)随频率的增加先减小后增大,PI/Al_2O_3膜的tanδ值在6 k Hz后最大;由于空间电荷弛豫,PI/Al_2O_3膜的tanδ值在0.02Hz左右出现了一个峰值;另外,因为电荷扩散能力不同,PI/SiO_2膜、PI/Al_2O_3膜以及PI膜的局部放电起始电压和耐电晕时间依次减小,而局部放电的平均幅值则依次增大;电晕放电使得3种薄膜表面都形成了很多微孔、裂纹,纳米复合薄膜表面出现块状物。研究结果表明:复合薄膜中界面体积分数和纳米粒子极性,是造成PI/SiO_2薄膜和PI/Al_2O_3薄膜电气性能差异的主要原因。
文摘Southern corn rust is one of destructive diseases in maize caused by Puccinia polysora Undrew. A mapping population of tropical sweet corn recombinant inbred lines (RILs) derived from a cross between hA9104 and hA9035 inbred lines were set up to detect quantitative trait loci (QTLs) involved in partial resistance to southern corn rust. Eighty nine RILs were used to evaluate resistance levels using nine-point relative scale (1-9) at Sweet Seeds, Suwan Farm, Thailand include combined analysis. A genetic linkage map was constructed with 157 SSR markers, with a total length of 2123.1 cM, covering 10 chromosomes. Broad-sense heritability of individual location ranged from 0.76 and 0.82 and combined across locations was 0.87. Multiple QTL mapping (MQM) was applied for the identification of the QTLs. Fifteen QTLs were detected on chromosome 1, 2, 5, 6, 9 and 10 in both locations and combined across locations. QTLs on chromosome 1, 5 and 6 were contributed by alleles of resistant parent hA9104 while others were contributed by alleles from the susceptible parent, hA9035. Phenotypic variance of each QTL explained ranged from 6.1% to 41.8% with a total of 69.8% - 81.9%. QTL on chromosome 1, 6 and 10 were stable QTLs detected in both locations.
基金Projects(51221001,51272213,51072166)supported by the National Natural Science Foundation of ChinaProject(GBKY1021)supported by the Fundamental Research Foundation of Northwestern Polytechnical University,ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C composites, and then MoSi2 and SiC were subsequently prepared in a CVI /CVR process using methyltrichlorosilane (MTS) as precursor. The deposition and reaction mechanism of the MoSi2-SiC composite coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The oxidation behavior of SiC-MoSi2 coated specimens was tested. The results show that the porous Mo layer can be densified with SiC phase decomposed from MTS, and transformed into SiC-MoSi2 by reacting with MTS as well. A dense composite coating was prepared with optimized deposition parameters. The coated specimen exhibits a good oxidation resistance with a little mass loss of 1.25% after oxidation at 1500 °C for 80 h.
文摘The gene RB is derived from the wild potato species S. bulbocastanum and confers partial resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. In order to investigate whether a single strain of P. infestans can adapt to overcome this partial resistance source, we subjected RB containing leaflets to multiple rounds of infection with P. infestans, with a culture isolated from a lesion used to infect the next leaflet (a passage). A parallel line of passages was done using susceptible leaflets as hosts. At the end of the experiment, P. infestans strains passaged through resistant or susceptible leaflets were compared for infection efficiency and lesion size. Variants of the P. infestans effector family IPI-O, some of which are recognized by the RB protein to elicit resistance, were cloned and sequenced to determine whether variation occurred during selection on the partially resistant host. Our results show that after 20 rounds of selection, no breakdown in RB resistance took place. In fact, the strain that was continually passaged through the partially resistant host produced smaller lesions on susceptible leaflets and had a lower infection frequency than the strain passaged through susceptible cultivar Katahdin. No changes within IPI-O coding regions were detected after selection on the hosts with RB. Our results indicate that individual strains of P. infestans are not capable of rapidly overcoming RB resistance even when it is the only host available.
基金supported by the grants from the National High-Tech Research and Development Program of China (No. 2011AA1001)the National Key Technology R&D Program of China (No. 2013BAD05B01)the National Natural Science Foundation of China (No. 31171539)
文摘The wild relatives of wheat (Triticum aestivum L.) contain tremendous amounts of potentially useful genes and represent a promising source of genetic diversity for wheat improvement (Bommineni and Jauhar, 1997). Thinopyrum ponticum (Popd.) Barkworth and D. R. Dewey [syn. Agropyron elongatum (Host) P. Beauv., Elytrigia pontica (Podp.) Holub, Lophopy- rum ponticum (Podp.) A. L6ve] (2n = 10x = 70), has high crossability with various Triticum species. Numerous studies have shown that Th. ponticum carries many potentially valu- able resistance genes against biotic and abiotic stresses (Shannon, 1978; Cox, 1991; Zheng et al., 2014a,b). Transferring the useful genes from Th. ponticum to common wheat through chromosome engineering had been a successful way to enhance the resistance of wheat to pests and diseases (Sharma et al., 1989; McIntosh, 1991).