期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On Analysis of the Behrens-Fisher Problem Based on Bayesian Evidence
1
作者 Nengak Emmanuel Goltong Sani Ibrahim Doguwa 《Open Journal of Statistics》 2019年第1期1-14,共14页
In this paper we have demonstrated the ability of the new Bayesian measure of evidence of Yin (2012, Computational Statistics, 27: 237-249) to solve both the Behrens-Fisher problem and Lindley's paradox. We have p... In this paper we have demonstrated the ability of the new Bayesian measure of evidence of Yin (2012, Computational Statistics, 27: 237-249) to solve both the Behrens-Fisher problem and Lindley's paradox. We have provided a general proof that for any prior which yields a linear combination of two independent t random variables as posterior distribution of the di erence of means, the new Bayesian measure of evidence given that prior will solve Lindleys' paradox thereby serving as a general proof for the works of Yin and Li (2014, Journal of Applied Mathematics, 2014(978691)) and Goltong?and Doguwa (2018, Open Journal of Statistics, 8: 902-914).?Using the Pareto prior as an example, we have shown by the use of?simulation results that the new Bayesian measure of evidence solves?Lindley's paradox. 展开更多
关键词 Behrens-Fisher PROBLEM Lindley's PARADOX METROPOLIS-HASTINGS Algorithm pareto prior t Distribution
下载PDF
基于GPD的稳健贝叶斯压缩感知ISAR成像方法 被引量:1
2
作者 夏朝禹 高瑜翔 +3 位作者 黄坤超 包兆华 郭春妮 王震 《电讯技术》 北大核心 2020年第5期585-590,共6页
现有贝叶斯压缩感知(Bayesian Compressed Sensing,BCS)-逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像算法中先验分布模型不能很好地满足可压缩性,导致成像精度随脉冲数目的减小、高斯噪声的增强而急剧下降。为此,提出... 现有贝叶斯压缩感知(Bayesian Compressed Sensing,BCS)-逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像算法中先验分布模型不能很好地满足可压缩性,导致成像精度随脉冲数目的减小、高斯噪声的增强而急剧下降。为此,提出了一种基于广义Pareto分布改进BCS成像方法(Improving BCS imaging based on GPD,IGPCS)。该方法主要在BCS框架下利用广义Pareto先验分布替代传统的广义Gaussian先验分布,以增强模拟信号的稀疏先验和可压缩性。进一步地,为了克服后验概率模型计算困难等问题,采用最大后验(Maximum A Posteriori,MAP)方法对超参数进行估计。通过对Mig-25小型飞机的ISAR模拟实验表明,与传统方法相比,IGPCS方法能够获取极高的成像精度,并且对低脉冲数、强高斯噪声环境具有较强的鲁棒性。 展开更多
关键词 逆合成孔径雷达 成像方法 贝叶斯压缩感知 广义pareto先验分布
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部