工程和科学领域中的优化问题常常具有大量的约束限制,称为约束优化问题.这类问题要求算法有能力在可行域中寻找问题的最优解.本文针对约束优化问题提出一种集成多策略的差分进化算法(Differential Evolution with Ensemble Multi-Strate...工程和科学领域中的优化问题常常具有大量的约束限制,称为约束优化问题.这类问题要求算法有能力在可行域中寻找问题的最优解.本文针对约束优化问题提出一种集成多策略的差分进化算法(Differential Evolution with Ensemble Multi-Strategies,EMSDE).首先,提出一种用于约束优化的参数自适应策略,利用归一化罚函数作为权重引导参数自适应地生成.其次,结合约束和动态罚函数法设计一种新的约束处理技术.最后,采用CEC2017约束优化基准函数来测试EMSDE和7种经典的约束优化算法.实验结果表明,相比7种经典的算法,EMSDE算法具有很强的竞争力.展开更多
In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building...In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building a LMIs-based synthesis algorithm, a self-adaptive control parameter multiobjective differential evolution algorithm is developed directly in the controller parameters space. In the case of systems with polytopic uncertainties, the worst case norm computation is formulated as an implicit optimization problem, and the proposed self-adaptive differential evolution is employed to calculate the worst case H-two and H-infinity norms. The numerical examples illustrate the power and validity of the proposed approach for the mixed H-two/H-infinity control multiobjective optimal design.展开更多
Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;"&g...Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span>展开更多
目前,空调房间配用的变风量末端装置(Variable Air Volume Terminal,VAV-TMN)往往采用整数阶PID-P串级调节方式,这带来了室温控制误差和超调量较大以及调节时间较长等问题。鉴于此,提出了空调VAV-TMN的室温分数阶PID-送风量PI的串级调...目前,空调房间配用的变风量末端装置(Variable Air Volume Terminal,VAV-TMN)往往采用整数阶PID-P串级调节方式,这带来了室温控制误差和超调量较大以及调节时间较长等问题。鉴于此,提出了空调VAV-TMN的室温分数阶PID-送风量PI的串级调节器设计方法。首先,综合分析空调工艺和自动控制的相关要求,对室内温度对象、温度和风量测量变送单元、送风量执行单元分别进行建模,确定主控制器为室温分数阶PID控制器(Indoor Temperature Fractional Order Proportional Integral Derivative Controller,IT-FOPIDC)和副控制器为送风量PI控制器(Sending Air Volume Proportional Integral Controller,SAV-PIC)的控制策略。其次,基于改进的自适应差分进化(Improved Parameter Self-adaptive Differential Evolution,IPSA-DE)算法来分别整定出IT-FOPIDC和SAV-PIC的控制参数最佳值。最后,借助MATLAB/Simulink工具,对该空调VAV-TMN的室温PIλDμ-送风量PI串级调节系统进行组态和数值模拟相应的控制效果。结果表明,该串级控制系统在理论上是可行的,且室温的控制效果明显优于基于Ziegler-Nichols整定法和DE算法的整数阶室温PID-送风量PI串级调节系统。展开更多
文摘工程和科学领域中的优化问题常常具有大量的约束限制,称为约束优化问题.这类问题要求算法有能力在可行域中寻找问题的最优解.本文针对约束优化问题提出一种集成多策略的差分进化算法(Differential Evolution with Ensemble Multi-Strategies,EMSDE).首先,提出一种用于约束优化的参数自适应策略,利用归一化罚函数作为权重引导参数自适应地生成.其次,结合约束和动态罚函数法设计一种新的约束处理技术.最后,采用CEC2017约束优化基准函数来测试EMSDE和7种经典的约束优化算法.实验结果表明,相比7种经典的算法,EMSDE算法具有很强的竞争力.
基金supported by the National Natural Science Foundation of China (Nos. 61203309, 61104088, 60835004)the Scientific Research Fund of Hunan Provincial Education Department (No. 12B043)+2 种基金the Natural Science Foundation of Hunan Province (No. 10JJ9007)the Industry-University-Research Combination Innovation Platform of Hunan Province (No. 2010XK6066)the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building a LMIs-based synthesis algorithm, a self-adaptive control parameter multiobjective differential evolution algorithm is developed directly in the controller parameters space. In the case of systems with polytopic uncertainties, the worst case norm computation is formulated as an implicit optimization problem, and the proposed self-adaptive differential evolution is employed to calculate the worst case H-two and H-infinity norms. The numerical examples illustrate the power and validity of the proposed approach for the mixed H-two/H-infinity control multiobjective optimal design.
文摘Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span>
文摘目前,空调房间配用的变风量末端装置(Variable Air Volume Terminal,VAV-TMN)往往采用整数阶PID-P串级调节方式,这带来了室温控制误差和超调量较大以及调节时间较长等问题。鉴于此,提出了空调VAV-TMN的室温分数阶PID-送风量PI的串级调节器设计方法。首先,综合分析空调工艺和自动控制的相关要求,对室内温度对象、温度和风量测量变送单元、送风量执行单元分别进行建模,确定主控制器为室温分数阶PID控制器(Indoor Temperature Fractional Order Proportional Integral Derivative Controller,IT-FOPIDC)和副控制器为送风量PI控制器(Sending Air Volume Proportional Integral Controller,SAV-PIC)的控制策略。其次,基于改进的自适应差分进化(Improved Parameter Self-adaptive Differential Evolution,IPSA-DE)算法来分别整定出IT-FOPIDC和SAV-PIC的控制参数最佳值。最后,借助MATLAB/Simulink工具,对该空调VAV-TMN的室温PIλDμ-送风量PI串级调节系统进行组态和数值模拟相应的控制效果。结果表明,该串级控制系统在理论上是可行的,且室温的控制效果明显优于基于Ziegler-Nichols整定法和DE算法的整数阶室温PID-送风量PI串级调节系统。