As a case study of the Panji No.1 Coal Mine in Anhui Province, based on thesite measured and statistical data, summarized the lithologic associations, characteristicsand distribution laws of interlayer-gliding structu...As a case study of the Panji No.1 Coal Mine in Anhui Province, based on thesite measured and statistical data, summarized the lithologic associations, characteristicsand distribution laws of interlayer-gliding structures and tectonic coal in the No.11-2 coalseams.The results show that 9 modes of lithologic association can form interlayer-glidingstructures.It is more easy for rock slip to occur when the lithologic associations are mainroof + coal seam + immediate floor type, compound roof+immediate roof + coal seam +immediate floor type and immediate roof + coal seam + immediate floor type.Lithologicassociations of roof and floor are the precondition to the formation of interlayer-glidingstructures.展开更多
Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain sh...Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain shortcomings. In order to reasonably evaluate the influence of coal seam surrounding rock on gas occurrence in Panji mining area, we quantitatively evaluated the effect of coal seam surrounding rock on gas occurrence by influence coefficient of roof strata thickness, and built six mathematical models of the variational gas content in the mining area which is divided into six gas geological units. The results shows that the coal seam gas content is mainly influenced by 20 mroof strata in each gas geological unit, the gas content presents the tendency of increase, and with the influence coefficient of strata thickness increases, they exist a significant linear relationship.展开更多
基金Supported by the National Natural Science Foundation of China(40772092)
文摘As a case study of the Panji No.1 Coal Mine in Anhui Province, based on thesite measured and statistical data, summarized the lithologic associations, characteristicsand distribution laws of interlayer-gliding structures and tectonic coal in the No.11-2 coalseams.The results show that 9 modes of lithologic association can form interlayer-glidingstructures.It is more easy for rock slip to occur when the lithologic associations are mainroof + coal seam + immediate floor type, compound roof+immediate roof + coal seam +immediate floor type and immediate roof + coal seam + immediate floor type.Lithologicassociations of roof and floor are the precondition to the formation of interlayer-glidingstructures.
文摘Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain shortcomings. In order to reasonably evaluate the influence of coal seam surrounding rock on gas occurrence in Panji mining area, we quantitatively evaluated the effect of coal seam surrounding rock on gas occurrence by influence coefficient of roof strata thickness, and built six mathematical models of the variational gas content in the mining area which is divided into six gas geological units. The results shows that the coal seam gas content is mainly influenced by 20 mroof strata in each gas geological unit, the gas content presents the tendency of increase, and with the influence coefficient of strata thickness increases, they exist a significant linear relationship.