This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourie...This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.展开更多
In this paper, we obtain a characterization of the Paley-Wiener space with several variables, which is denoted by Bπ,p(Rn), 1≤p<∞, i.e., for 1<p<∞, Bπ,p(Rn) is isomorphic to lp(Zn), and for p=1, Bπ,1(Rn...In this paper, we obtain a characterization of the Paley-Wiener space with several variables, which is denoted by Bπ,p(Rn), 1≤p<∞, i.e., for 1<p<∞, Bπ,p(Rn) is isomorphic to lp(Zn), and for p=1, Bπ,1(Rn) is isomorphic to the discrete Hardy space with several variables, which is denoted by H(Zn).展开更多
基金supported by the Deanship of Scientific Research at King Khalid University,Saudi Arabia (R.G.P.1/207/43)。
文摘This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.
基金Partially supported by the National Natural Science Foundation of China(10371011 and 10071005) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.
基金the National Natural Science Foundation of China (19671012) Doctoral Programme institution of Higher Education Foundation
文摘In this paper, we obtain a characterization of the Paley-Wiener space with several variables, which is denoted by Bπ,p(Rn), 1≤p<∞, i.e., for 1<p<∞, Bπ,p(Rn) is isomorphic to lp(Zn), and for p=1, Bπ,1(Rn) is isomorphic to the discrete Hardy space with several variables, which is denoted by H(Zn).