To evaluate the supplementary blue light intensity on growth and health-promoting compounds in pak choi(Brassica campestris ssp.chinensis var.communis),four blue light intensity treatments(T0,T50,T100 and T150 indi...To evaluate the supplementary blue light intensity on growth and health-promoting compounds in pak choi(Brassica campestris ssp.chinensis var.communis),four blue light intensity treatments(T0,T50,T100 and T150 indicate 0,50,100,and 150μmol m^(-2) s^(-1),respectively)were applied 10 days before harvest under greenhouse conditions.Both of cultivars(greenand red-leaf pak choi)under T50 had the highest yield,content of chlorophyll and sugars.With light intensity increasing,antioxidant compounds(vitamin C and carotenoids)significantly increased,while nitrate content showed an opposite trend.The health-promoting compounds(phenolics,flavonoids,anthocyanins,and glucosinolates)were significantly higher under supplementary light treatment than T0,so as the antioxidant capacity(2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power).The species-specific differences in photosynthetic pigment and health-promoting compounds was found in green-and red-leaf pak choi.T50 treatment could be used for yield improvement,whereas T100 treatment could be applied for quality improvement.Results showed that blue light intensity can regulate the accumulation of biomass,morphology and health-promoting compounds in pak choi under greenhouse conditions.展开更多
Pak choi is a low-temperature vernalized plant that readily undergoes premature bolting during spring, but little is known about the governing molecular regulation of vernalization. In order to enhance our understandi...Pak choi is a low-temperature vernalized plant that readily undergoes premature bolting during spring, but little is known about the governing molecular regulation of vernalization. In order to enhance our understanding of mechanism about premature bolting, we discussed the relationship between auxin(indole-3-acetic acid, IAA) and flowering of pak choi. During vernalization, hormone metabolism is an important regulatory pathway, and IAA plays a specific role. IAA metabolism has been studied in Arabidopsis thaliana and other plants, but not in pak choi. In this paper, the IAA content in pak choi shoot apices during vernalization and different growth stages was compared. The IAA content decreased significantly after low-temperature treatment(4 °C) and then increased rapidly during vegetative growth. During floral bud initiation,the IAA content decreased rapidly and was the lowest. Expressions of genes encoding key IAA metabolic enzymes were analyzed, and a major synthetase-encoding gene was downregulated, while a key degrading enzyme-encoding gene was upregulated during each comparison period,resulting in decreased IAA content. Expressions of four genes(Bra034975, Bra030246, Bra012239 and Bra040296) were consistent with changes in the IAA content. The functions of differentially expressed genes(DEGs) were analyzed, and 15 DEGs were found to be related to IAA metabolism.The findings illuminated the molecular mechanism regulating IAA content during vernalization in pak choi.展开更多
基金supported by the National Key Research and Development Program of China (2017YFD0701500)the Teamwork Projects Funded by Guangdong Natural Science Foundation, China (S2013030012842)+1 种基金the Guangdong Provincial Science & Technology Project, China (2015A020209146, 2015B090903074)the Guangzhou Science & Technology Project, China (201605030005, 201704020058)
文摘To evaluate the supplementary blue light intensity on growth and health-promoting compounds in pak choi(Brassica campestris ssp.chinensis var.communis),four blue light intensity treatments(T0,T50,T100 and T150 indicate 0,50,100,and 150μmol m^(-2) s^(-1),respectively)were applied 10 days before harvest under greenhouse conditions.Both of cultivars(greenand red-leaf pak choi)under T50 had the highest yield,content of chlorophyll and sugars.With light intensity increasing,antioxidant compounds(vitamin C and carotenoids)significantly increased,while nitrate content showed an opposite trend.The health-promoting compounds(phenolics,flavonoids,anthocyanins,and glucosinolates)were significantly higher under supplementary light treatment than T0,so as the antioxidant capacity(2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power).The species-specific differences in photosynthetic pigment and health-promoting compounds was found in green-and red-leaf pak choi.T50 treatment could be used for yield improvement,whereas T100 treatment could be applied for quality improvement.Results showed that blue light intensity can regulate the accumulation of biomass,morphology and health-promoting compounds in pak choi under greenhouse conditions.
基金supported by Shanxi Province Key Research and Development Program Key Projects (Grant No. 201703D211006 201703D211001-04-01)the Natural Science Foundation of Shanxi Province (Grant No. 201701D121101)
文摘Pak choi is a low-temperature vernalized plant that readily undergoes premature bolting during spring, but little is known about the governing molecular regulation of vernalization. In order to enhance our understanding of mechanism about premature bolting, we discussed the relationship between auxin(indole-3-acetic acid, IAA) and flowering of pak choi. During vernalization, hormone metabolism is an important regulatory pathway, and IAA plays a specific role. IAA metabolism has been studied in Arabidopsis thaliana and other plants, but not in pak choi. In this paper, the IAA content in pak choi shoot apices during vernalization and different growth stages was compared. The IAA content decreased significantly after low-temperature treatment(4 °C) and then increased rapidly during vegetative growth. During floral bud initiation,the IAA content decreased rapidly and was the lowest. Expressions of genes encoding key IAA metabolic enzymes were analyzed, and a major synthetase-encoding gene was downregulated, while a key degrading enzyme-encoding gene was upregulated during each comparison period,resulting in decreased IAA content. Expressions of four genes(Bra034975, Bra030246, Bra012239 and Bra040296) were consistent with changes in the IAA content. The functions of differentially expressed genes(DEGs) were analyzed, and 15 DEGs were found to be related to IAA metabolism.The findings illuminated the molecular mechanism regulating IAA content during vernalization in pak choi.