Electrochemical impedance spectroscopy (EIS) in the l00 kHz-10 mHz frequency range was employed as the main electrochemical technique to study the corrosion protection behaviour of zinc rich epoxy paint in 3% NaCl sol...Electrochemical impedance spectroscopy (EIS) in the l00 kHz-10 mHz frequency range was employed as the main electrochemical technique to study the corrosion protection behaviour of zinc rich epoxy paint in 3% NaCl solution. The EIS results obtained at the open-circuit corrosion potential have been interpreted using a model involving the impedance of particle to particle contact to account for the increasing resistance between zinc particles with immersion period, in addition to the impedance due to the zinc surface oxide layer and the electrical resistivity of the binder. Galvanic current and dc potential measurements allowed us to conclude that the cathodic protection effect of the paint takes some time to be achieved. The loss of cathodic protection is due to a double effect: the decrease of the Zn/Fe area ratio due to Zn corrosion and the loss of electric contact between Zn to Zn particles. Even when the cathodic protection effect by Zn dust become weak, the substrate steel is still protected against corrosion due to the barrier nature of the ZRP film reinforced by Zn.展开更多
Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include te...Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include textiles, paints, wallpapers, glues, adhesives, varnishes, and lacquers;furniture and wooden products like particleboard, plywood, and medium-density fiberboard that contain formaldehyde-based resins;shoe products;cosmetics;electronic devices;and other consumer goods like paper products and insecticides. According to the World Health Organisation, indoor formaldehyde concentrations shouldn’t exceed 0.1 mg/m<sup>3</sup>. The methods include membrane separation, plasma, photocatalytic decomposition, physisorption, chemisorption, biological and botanical filtration, and catalytic oxidation. Materials based on metal oxides and supported noble metals work as oxidation catalysts. Consequently, a paint that passively eliminates aldehydes from buildings can be developed by adding absorbents and formaldehyde scavengers to the latex composition. It will be crucial to develop techniques for the careful detection and removal of formaldehyde in the future. Additionally, microbial decomposition is less expensive and produces fewer pollutants. The main goal of future research will be to develop a biological air quality control system that will boost the effectiveness of formaldehyde elimination. The various methods of removing formaldehyde through paints have been reviewed here, including the use of mixed metal oxides, formaldehyde-absorbing emulsions, nano titanium dioxide, catalytic oxidation, and aromatic formaldehyde abating materials that can improve indoor air quality.展开更多
文摘Electrochemical impedance spectroscopy (EIS) in the l00 kHz-10 mHz frequency range was employed as the main electrochemical technique to study the corrosion protection behaviour of zinc rich epoxy paint in 3% NaCl solution. The EIS results obtained at the open-circuit corrosion potential have been interpreted using a model involving the impedance of particle to particle contact to account for the increasing resistance between zinc particles with immersion period, in addition to the impedance due to the zinc surface oxide layer and the electrical resistivity of the binder. Galvanic current and dc potential measurements allowed us to conclude that the cathodic protection effect of the paint takes some time to be achieved. The loss of cathodic protection is due to a double effect: the decrease of the Zn/Fe area ratio due to Zn corrosion and the loss of electric contact between Zn to Zn particles. Even when the cathodic protection effect by Zn dust become weak, the substrate steel is still protected against corrosion due to the barrier nature of the ZRP film reinforced by Zn.
文摘Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include textiles, paints, wallpapers, glues, adhesives, varnishes, and lacquers;furniture and wooden products like particleboard, plywood, and medium-density fiberboard that contain formaldehyde-based resins;shoe products;cosmetics;electronic devices;and other consumer goods like paper products and insecticides. According to the World Health Organisation, indoor formaldehyde concentrations shouldn’t exceed 0.1 mg/m<sup>3</sup>. The methods include membrane separation, plasma, photocatalytic decomposition, physisorption, chemisorption, biological and botanical filtration, and catalytic oxidation. Materials based on metal oxides and supported noble metals work as oxidation catalysts. Consequently, a paint that passively eliminates aldehydes from buildings can be developed by adding absorbents and formaldehyde scavengers to the latex composition. It will be crucial to develop techniques for the careful detection and removal of formaldehyde in the future. Additionally, microbial decomposition is less expensive and produces fewer pollutants. The main goal of future research will be to develop a biological air quality control system that will boost the effectiveness of formaldehyde elimination. The various methods of removing formaldehyde through paints have been reviewed here, including the use of mixed metal oxides, formaldehyde-absorbing emulsions, nano titanium dioxide, catalytic oxidation, and aromatic formaldehyde abating materials that can improve indoor air quality.