Objective: To observe the clinical efficacy and differences of the Zhuyu Juanbi formula delivered through ultrasound at Zusanli on patients with chemotherapy-induced peripheral neuropathy (CIPN) due to paclitaxel inje...Objective: To observe the clinical efficacy and differences of the Zhuyu Juanbi formula delivered through ultrasound at Zusanli on patients with chemotherapy-induced peripheral neuropathy (CIPN) due to paclitaxel injection. Methods: A total of 72 breast cancer patients with CIPN were randomly divided into two groups. The treatment group (36 cases) was treated with oral methylcobalamin plus ultrasonic medicine permeating Zhuyu Juanbi formulae, while the control group (36 cases) was treated with oral methylcobalamin alone. Following two 2 cycles of continuous treatment, the efficacy of peripheral neurotoxicity, TCM syndrome score, FACT/GOG-Ntx score, total neuropathy score, and safety indicators of gynecological cancer patients were observed in the two groups. Result: In the treatment of CIPN, the addition of ultrasonic medicine permeating Zhuyu Juanbi formulae was more effective than oral methylcobalamin alone in reducing peripheral neurotoxicity and improving the quality of life of patients. The difference between the two groups was statistically significant (P < 0.05), and ultrasound drug penetration Zhuyu Juanbi formulae significantly reduced the FACT/ GOG-Ntx score and TNS score in the treatment group. In terms of drug safety, it rarely caused adverse reactions such as grade 3 and 4 leukopenia, and the safety profile was therefore good. Conclusion: The combination of ultrasonic medicine permeating Zhuyu Juanbi formulae and methylcobalamin has been demonstrated to be an effective treatment for peripheral neurotoxicity in patients with PIPN. It has been shown to significantly improve the clinical symptoms of PIPN patients, improve the quality of life of patients, and have a good safety profile.展开更多
The aim of this research was to assess the antinociceptive activity of the transient receptor potential (TRP) channel TRPV1, TRPM8, and TRPA1 antagonists in neurogenic, tonic, and neuropathic pain models in mice. Fo...The aim of this research was to assess the antinociceptive activity of the transient receptor potential (TRP) channel TRPV1, TRPM8, and TRPA1 antagonists in neurogenic, tonic, and neuropathic pain models in mice. For this purpose, TRP channel antagonists were administered into the dorsal surface of a hind paw 15 min before capsaicin, allyl isothiocyanate (AITC), or formalin. Their antiallodynic and antihyperalgesic efficacies after intraperitoneal ad- ministration were also assessed in a paclitaxel-induced neuropathic pain model. Motor coordination of paclitaxel- treated mice that received these TRP channel antagonists was investigated using the rotarod test. TRPV1 antagonists, capsazepine and SB-366791, attenuated capsaicin-induced nociceptive reaction in a concentration-dependent manner. At 8 pg/20 pl, this effect was 51% (P〈0.001) for capsazepine and 37% (P〈0.05) for SB-366791. A TRPA1 antagonist, A-967079, reduced pain reaction by 48% (P〈0.05) in the AITC test and by 54% (P〈0.001) in the early phase of the formalin test. The test compounds had no influence on the late phase of the formalin test. In paclitaxel-treated mice, they did not attenuate heat hyperalgesia but N-(3-aminopropyl)-2-{[(3-methylphenyl)methyl]oxy}-N-(2-thienylmethyl) benzamide hydrochloride salt (AMTB), a TRPM8 antagonist, reduced cold hyperalgesia and tactile allodynia by 31% (P〈0.05) and 51% (P〈0.01), respectively. HC-030031, a TRPA1 channel antagonist, attenuated tactile allodynia in the von Frey test (62%; P〈0.001). In conclusion, distinct members of TRP channel family are involved in different pain models in mice. Antagonists of TRP channels attenuate nocifensive responses of neurogenic, tonic, and neuropathic pain, but their efficacies strongly depend on the pain model used.展开更多
文摘Objective: To observe the clinical efficacy and differences of the Zhuyu Juanbi formula delivered through ultrasound at Zusanli on patients with chemotherapy-induced peripheral neuropathy (CIPN) due to paclitaxel injection. Methods: A total of 72 breast cancer patients with CIPN were randomly divided into two groups. The treatment group (36 cases) was treated with oral methylcobalamin plus ultrasonic medicine permeating Zhuyu Juanbi formulae, while the control group (36 cases) was treated with oral methylcobalamin alone. Following two 2 cycles of continuous treatment, the efficacy of peripheral neurotoxicity, TCM syndrome score, FACT/GOG-Ntx score, total neuropathy score, and safety indicators of gynecological cancer patients were observed in the two groups. Result: In the treatment of CIPN, the addition of ultrasonic medicine permeating Zhuyu Juanbi formulae was more effective than oral methylcobalamin alone in reducing peripheral neurotoxicity and improving the quality of life of patients. The difference between the two groups was statistically significant (P < 0.05), and ultrasound drug penetration Zhuyu Juanbi formulae significantly reduced the FACT/ GOG-Ntx score and TNS score in the treatment group. In terms of drug safety, it rarely caused adverse reactions such as grade 3 and 4 leukopenia, and the safety profile was therefore good. Conclusion: The combination of ultrasonic medicine permeating Zhuyu Juanbi formulae and methylcobalamin has been demonstrated to be an effective treatment for peripheral neurotoxicity in patients with PIPN. It has been shown to significantly improve the clinical symptoms of PIPN patients, improve the quality of life of patients, and have a good safety profile.
基金supported by the National Science Centre Grant(No.DEC-2012/05/B/NZ7/02705),Poland
文摘The aim of this research was to assess the antinociceptive activity of the transient receptor potential (TRP) channel TRPV1, TRPM8, and TRPA1 antagonists in neurogenic, tonic, and neuropathic pain models in mice. For this purpose, TRP channel antagonists were administered into the dorsal surface of a hind paw 15 min before capsaicin, allyl isothiocyanate (AITC), or formalin. Their antiallodynic and antihyperalgesic efficacies after intraperitoneal ad- ministration were also assessed in a paclitaxel-induced neuropathic pain model. Motor coordination of paclitaxel- treated mice that received these TRP channel antagonists was investigated using the rotarod test. TRPV1 antagonists, capsazepine and SB-366791, attenuated capsaicin-induced nociceptive reaction in a concentration-dependent manner. At 8 pg/20 pl, this effect was 51% (P〈0.001) for capsazepine and 37% (P〈0.05) for SB-366791. A TRPA1 antagonist, A-967079, reduced pain reaction by 48% (P〈0.05) in the AITC test and by 54% (P〈0.001) in the early phase of the formalin test. The test compounds had no influence on the late phase of the formalin test. In paclitaxel-treated mice, they did not attenuate heat hyperalgesia but N-(3-aminopropyl)-2-{[(3-methylphenyl)methyl]oxy}-N-(2-thienylmethyl) benzamide hydrochloride salt (AMTB), a TRPM8 antagonist, reduced cold hyperalgesia and tactile allodynia by 31% (P〈0.05) and 51% (P〈0.01), respectively. HC-030031, a TRPA1 channel antagonist, attenuated tactile allodynia in the von Frey test (62%; P〈0.001). In conclusion, distinct members of TRP channel family are involved in different pain models in mice. Antagonists of TRP channels attenuate nocifensive responses of neurogenic, tonic, and neuropathic pain, but their efficacies strongly depend on the pain model used.