A sub-mA phase-locked loop fabricated in a 65nm standard digital CMOS process is presented. The impact of process variation is largely removed by a novel open-loop calibration that is performed only during start-up bu...A sub-mA phase-locked loop fabricated in a 65nm standard digital CMOS process is presented. The impact of process variation is largely removed by a novel open-loop calibration that is performed only during start-up but is opened during normal operation. This method reduces calibration time significantly compared with its closed-loop counterpart. The dual-loop PLL architecture is adopted to achieve a process-independent damping factor and pole-zero separation. A new phase frequency detector embedded with a level shifter is introduced. Careful power partitioning is explored to minimize the noise coupling. The proposed PLL achieves 3. lps RMS jitter running at 1.6GHz while consuming only 0.94mA.展开更多
A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between th...A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between the process,voltage,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation margin is proposed for stability compensation. Furthermore,a simple adjustable current cell in the charge pump is proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total variation. A fully integrated frequency synthesizer from 1 to 1.05GHz with 250kHz channel resolution is implemented to verify the methods.展开更多
文摘A sub-mA phase-locked loop fabricated in a 65nm standard digital CMOS process is presented. The impact of process variation is largely removed by a novel open-loop calibration that is performed only during start-up but is opened during normal operation. This method reduces calibration time significantly compared with its closed-loop counterpart. The dual-loop PLL architecture is adopted to achieve a process-independent damping factor and pole-zero separation. A new phase frequency detector embedded with a level shifter is introduced. Careful power partitioning is explored to minimize the noise coupling. The proposed PLL achieves 3. lps RMS jitter running at 1.6GHz while consuming only 0.94mA.
文摘A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between the process,voltage,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation margin is proposed for stability compensation. Furthermore,a simple adjustable current cell in the charge pump is proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total variation. A fully integrated frequency synthesizer from 1 to 1.05GHz with 250kHz channel resolution is implemented to verify the methods.