Wheat is the most widely cultivated staple food crop, and multiple types of food derivatives are processed and consumed globally. Wheat grain quality(WGQ) is central to food processing and nutritional value, and is a ...Wheat is the most widely cultivated staple food crop, and multiple types of food derivatives are processed and consumed globally. Wheat grain quality(WGQ) is central to food processing and nutritional value, and is a decisive factor for consumer acceptance and commercial value of wheat cultivars. Hence, improvement in WGQ traits is top priority for both conventional and molecular wheat breeding. In this review we will focus on two important WGQ traits, grain milling and end-use, and will summarize recent progress in China. Chinese scientists have invested substantial effort in molecular genetic and genomic analysis of these traits and their effects on end-use properties. The insights and resources generated have contributed to the understanding and improvement of these traits. As high-quality genomics information and powerful genome engineering tools are becoming available for wheat, more fundamental breakthroughs in dissecting the molecular and genomic basis of WGQ are expected. China will strive to make further significant contributions to the study and improvement of WGQ in the genomics era.展开更多
籽粒硬度是小麦加工品质的重要影响因素。puroind oline a(P in a)和puroind oline b(P in b)是控制小麦籽粒硬度的主效基因。根据已报导的小麦P in b基因的保守序列,设计合成了一对特异性引物ForB 1与R evB 1,对粘果山羊草(A eg ilop s...籽粒硬度是小麦加工品质的重要影响因素。puroind oline a(P in a)和puroind oline b(P in b)是控制小麦籽粒硬度的主效基因。根据已报导的小麦P in b基因的保守序列,设计合成了一对特异性引物ForB 1与R evB 1,对粘果山羊草(A eg ilop s kotschy i,CuMk)的三个材料的基因组DNA和胚乳cDNA进行P in b基因扩增、克隆、序列测定和表达分析,发现了4个新型P in b等位基因,基因序列与六倍体小麦的同源基因存在较大的差异。与软粒小麦品种C ap ito le的P inb-D 1a相比较,其核苷酸同源性分别为93.3%、94.6%、94.6%、94.4%,氨基酸同源性分别为90.5%、93.2%、93.2%、92.6%。其ORF长447 bp,编码148个氨基酸残基,都具有麦类作物P in b基因特有的19个氨基酸的信号肽序列和W PTKWW K的色氨酸结构域。等位基因P in b-11-1含有1个紧邻色氨酸结构域的突变位点(V a l66Phe)。RT-PCR证实了P in b基因在籽粒胚乳中的表达。Sou thern b lot分析结果显示,三种材料均含有两个拷贝的P in b基因。研究结果表明,粘果山羊草中包含与小麦差异较大的籽粒硬度控制基因,为栽培小麦的品质改良提供了丰富的基因资源。展开更多
基金the Ministry of Science and Technology of China (2016YFD0100500)Chinese Academy of Sciences (XDA08020302, 2017PB0044)
文摘Wheat is the most widely cultivated staple food crop, and multiple types of food derivatives are processed and consumed globally. Wheat grain quality(WGQ) is central to food processing and nutritional value, and is a decisive factor for consumer acceptance and commercial value of wheat cultivars. Hence, improvement in WGQ traits is top priority for both conventional and molecular wheat breeding. In this review we will focus on two important WGQ traits, grain milling and end-use, and will summarize recent progress in China. Chinese scientists have invested substantial effort in molecular genetic and genomic analysis of these traits and their effects on end-use properties. The insights and resources generated have contributed to the understanding and improvement of these traits. As high-quality genomics information and powerful genome engineering tools are becoming available for wheat, more fundamental breakthroughs in dissecting the molecular and genomic basis of WGQ are expected. China will strive to make further significant contributions to the study and improvement of WGQ in the genomics era.
文摘籽粒硬度是小麦加工品质的重要影响因素。puroind oline a(P in a)和puroind oline b(P in b)是控制小麦籽粒硬度的主效基因。根据已报导的小麦P in b基因的保守序列,设计合成了一对特异性引物ForB 1与R evB 1,对粘果山羊草(A eg ilop s kotschy i,CuMk)的三个材料的基因组DNA和胚乳cDNA进行P in b基因扩增、克隆、序列测定和表达分析,发现了4个新型P in b等位基因,基因序列与六倍体小麦的同源基因存在较大的差异。与软粒小麦品种C ap ito le的P inb-D 1a相比较,其核苷酸同源性分别为93.3%、94.6%、94.6%、94.4%,氨基酸同源性分别为90.5%、93.2%、93.2%、92.6%。其ORF长447 bp,编码148个氨基酸残基,都具有麦类作物P in b基因特有的19个氨基酸的信号肽序列和W PTKWW K的色氨酸结构域。等位基因P in b-11-1含有1个紧邻色氨酸结构域的突变位点(V a l66Phe)。RT-PCR证实了P in b基因在籽粒胚乳中的表达。Sou thern b lot分析结果显示,三种材料均含有两个拷贝的P in b基因。研究结果表明,粘果山羊草中包含与小麦差异较大的籽粒硬度控制基因,为栽培小麦的品质改良提供了丰富的基因资源。