期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive Learning with Large Variability of Teaching Signals for Neural Networks and Its Application to Motion Control of an Industrial Robot 被引量:2
1
作者 Fusaomi Nagata Keigo Watanabe 《International Journal of Automation and computing》 EI 2011年第1期54-61,共8页
Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward contr... Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator. 展开更多
关键词 Neural networks large-scale teaching signal sigmoid function adaptive learning servo system puma560 manipulator trajectory following control nonlinear control.
下载PDF
A Novel Stochastic Algorithm Using Pythagorean Means for Minimization
2
作者 Mona Subramaniam Manju Senthil Madhav Nigam 《Intelligent Control and Automation》 2010年第2期82-89,共8页
In this paper, A Novel Stochastic Algorithm using Pythagorean means for minimization of the objective function is described. The algorithm is initially tested with Rastrigin’s function and compared with Genetic algor... In this paper, A Novel Stochastic Algorithm using Pythagorean means for minimization of the objective function is described. The algorithm is initially tested with Rastrigin’s function and compared with Genetic algorithm results for the function with the same initial conditions. After this, it is used in tuning the gains of fuzzy PD + I controller for trajectory control of PUMA 560 robot manipulator. The results are again verified with the results of genetic algorithm. 展开更多
关键词 Stochastic ALGORITHM PYTHAGOREAN MEANS Gain Tuning Fuzzy controller Genetic ALGORITHM puma560 trajectory control ROBOTICS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部