The hydrophobic silica aerogel (SiO2 aerogel) was prepared by/n situ polymerization sol-gel method and ethanol supercritical drying, with tetraethoxysilane (TEOS) as silica source, phenyltriethoxysilane (PTES) a...The hydrophobic silica aerogel (SiO2 aerogel) was prepared by/n situ polymerization sol-gel method and ethanol supercritical drying, with tetraethoxysilane (TEOS) as silica source, phenyltriethoxysilane (PTES) as modifier, ethanol as solvent and ammonia as catalyst. The effects of n(PTES)/n(TOES) were investigated on gel time, structure, and hydrophobicity. The SiO2 aerogel was measured by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The effects of n(PTES)/n(TOES) were also studied on adsorption property of pentane, hexane, heptane, octane, benzene, toluene, o-xylenc, nitromethane, nitroethane, and nitrobenzene. The adsorption intensity of SiO2 aerogel was compared with that of activated carbon. The results show, with the increasing ofn(PTES)/n(TOES), the surface area, pore volume, and pore size of SiO2 aerogel decreased, gel time and hydrophobicity increased, and the contact angle could be 154° with n(PTES)/n(TOES)=0.7. The adsorption intensity of SiO2 aerogel with n(PTES)/n(TOES)=0.5 was bigger than that of activated carbon with an average 5.84 times of 10 organic liquid. The adsorption intensity of aerogel with n(PTES)/n(TOES) =0.1 was the best one in all samples with the average 8.33 times compared with that of activated carbon.展开更多
A field experiment was carried out at Abu-Rawash sewage farm to appraise the effect of certain novel remediative amendments on the quality of oil as well as the vegetative parameters and yield criteria of canola plant...A field experiment was carried out at Abu-Rawash sewage farm to appraise the effect of certain novel remediative amendments on the quality of oil as well as the vegetative parameters and yield criteria of canola plant used as hyperaccumulator for the remediation of sewaged soils. The treatments included fallow soil (irrigated without growing canola), soil cultivated with canola (Brassica napus L.) and inoculated with arbuscular mycorrhiza (AM), soil inoculation with Thiobacillus sp. (a mixture of Thiobacillus ferrooxidans and Thiobacillus thiooxidant), soil treated with a mixture of 250 mg bentonite plus 250 mg rock phosphate/kg soil and inoculated with phosphate dissolving bacteria (PDB), and soil treated with all the aforementioned remediative amendments. Results indicated that the vegetative parameters and yield criteria of canola plant did not exhibit any serious adverse impact under all treatments applied. The concentrations of Zn and Cu in canola oil extracted from plants grown in soil inoculated with AM and/or Thiobacillus sp. far exceeded the safe permissible levels. On the other hand, the content of both PTEs in the oil extracted from canola plants grown in soil treated with either probentonite or with mixture of all remediative amendments followed the permissible safe levels.展开更多
To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and correspo...To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.展开更多
In this study,the sources of potentially toxic elements(PTEs)from atmospheric deposition in the waters of Guizhou’s Caohai Lake were investigated in addition to the potential risks to human health.Moss bags were used...In this study,the sources of potentially toxic elements(PTEs)from atmospheric deposition in the waters of Guizhou’s Caohai Lake were investigated in addition to the potential risks to human health.Moss bags were used to enrich PTEs from atmospheric deposition,and eight monitoring sites that best represented geographic variation were established around Caohai Lake.Moss bags were collected and examined at every 3 months to identify spatiotemporal patterns of dry and wet atmospheric deposition of PTEs.Zn was the most abundant metal identified from deposition in Caohai(72.07%–95.94%),followed by Pb and Cd,while Hg was the least abundant(0.008%–0.354%).The contributions of wet deposition of PTEs were greater than those of dry deposition,and deposition during the heating season from December to April was greater than that between April to July.Hg was mainly derived from atmospheric dry deposition(65.38%–84.44%).Spatial distribution analysis indicated that atmospheric deposition was associated with the intensity of human activities and heating emissions.Exposure via hand-to-mouth contact accounted for over 99%of the total exposure risk although overall exposure was lower than threshold acceptable levels for carcinogenic and non-carcinogenic metals,indicating an overall lack of risk towards human health.Nevertheless,the health risk from atmospheric deposition of PTEs in Caohai Lake may be reduced by focusing on Zn,Pb,and Cd deposition in rainfall and minimizing the hazards associated with hand-to-mouth exposure to PTEs.展开更多
基金Funded by the National Natural Science Foundation of China(No.10976013)the Science Project of Ministry of Housing and Urban-Rural Development(No.2011-K7-16)the State Key Laboratory of Materials Oriented Chemical Engineering(No.KL11-09)
文摘The hydrophobic silica aerogel (SiO2 aerogel) was prepared by/n situ polymerization sol-gel method and ethanol supercritical drying, with tetraethoxysilane (TEOS) as silica source, phenyltriethoxysilane (PTES) as modifier, ethanol as solvent and ammonia as catalyst. The effects of n(PTES)/n(TOES) were investigated on gel time, structure, and hydrophobicity. The SiO2 aerogel was measured by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The effects of n(PTES)/n(TOES) were also studied on adsorption property of pentane, hexane, heptane, octane, benzene, toluene, o-xylenc, nitromethane, nitroethane, and nitrobenzene. The adsorption intensity of SiO2 aerogel was compared with that of activated carbon. The results show, with the increasing ofn(PTES)/n(TOES), the surface area, pore volume, and pore size of SiO2 aerogel decreased, gel time and hydrophobicity increased, and the contact angle could be 154° with n(PTES)/n(TOES)=0.7. The adsorption intensity of SiO2 aerogel with n(PTES)/n(TOES)=0.5 was bigger than that of activated carbon with an average 5.84 times of 10 organic liquid. The adsorption intensity of aerogel with n(PTES)/n(TOES) =0.1 was the best one in all samples with the average 8.33 times compared with that of activated carbon.
文摘A field experiment was carried out at Abu-Rawash sewage farm to appraise the effect of certain novel remediative amendments on the quality of oil as well as the vegetative parameters and yield criteria of canola plant used as hyperaccumulator for the remediation of sewaged soils. The treatments included fallow soil (irrigated without growing canola), soil cultivated with canola (Brassica napus L.) and inoculated with arbuscular mycorrhiza (AM), soil inoculation with Thiobacillus sp. (a mixture of Thiobacillus ferrooxidans and Thiobacillus thiooxidant), soil treated with a mixture of 250 mg bentonite plus 250 mg rock phosphate/kg soil and inoculated with phosphate dissolving bacteria (PDB), and soil treated with all the aforementioned remediative amendments. Results indicated that the vegetative parameters and yield criteria of canola plant did not exhibit any serious adverse impact under all treatments applied. The concentrations of Zn and Cu in canola oil extracted from plants grown in soil inoculated with AM and/or Thiobacillus sp. far exceeded the safe permissible levels. On the other hand, the content of both PTEs in the oil extracted from canola plants grown in soil treated with either probentonite or with mixture of all remediative amendments followed the permissible safe levels.
基金supported by Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2023KFKTB001)the Science&Technology Fundamental Resources Investigation Program(2022FY101800)+2 种基金the National Nonprofit Institute Research Grant of IGGE(AS2023D01)the projects of the China Geological Survey(DD20230309 and DD20190305)the National Natural Science Foundation of China(42002105)。
文摘To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.
基金supported by the National Natural Science Foundation of China(21767006)The Science and Technology of Guizhou Province,China([2018]2349)。
文摘In this study,the sources of potentially toxic elements(PTEs)from atmospheric deposition in the waters of Guizhou’s Caohai Lake were investigated in addition to the potential risks to human health.Moss bags were used to enrich PTEs from atmospheric deposition,and eight monitoring sites that best represented geographic variation were established around Caohai Lake.Moss bags were collected and examined at every 3 months to identify spatiotemporal patterns of dry and wet atmospheric deposition of PTEs.Zn was the most abundant metal identified from deposition in Caohai(72.07%–95.94%),followed by Pb and Cd,while Hg was the least abundant(0.008%–0.354%).The contributions of wet deposition of PTEs were greater than those of dry deposition,and deposition during the heating season from December to April was greater than that between April to July.Hg was mainly derived from atmospheric dry deposition(65.38%–84.44%).Spatial distribution analysis indicated that atmospheric deposition was associated with the intensity of human activities and heating emissions.Exposure via hand-to-mouth contact accounted for over 99%of the total exposure risk although overall exposure was lower than threshold acceptable levels for carcinogenic and non-carcinogenic metals,indicating an overall lack of risk towards human health.Nevertheless,the health risk from atmospheric deposition of PTEs in Caohai Lake may be reduced by focusing on Zn,Pb,and Cd deposition in rainfall and minimizing the hazards associated with hand-to-mouth exposure to PTEs.