A CMOS voltage reference, which is based on VGs and/x ΔGS in the weak inversion region, has been designed and implemented in standard 0.6μm CMOS technology. No diodes and parasitic bipolar junction transistors (BJT...A CMOS voltage reference, which is based on VGs and/x ΔGS in the weak inversion region, has been designed and implemented in standard 0.6μm CMOS technology. No diodes and parasitic bipolar junction transistors (BJTs) are used. The proposed voltage reference uses a current-mode topology by summing a PTAT current and a CTAT current into a re- sistor to generate the required reference voltage. It can also provide more than one reference voltage output, which is quite suitable for systems requiring many different reference voltages simultaneously. The occupied chip area is 0. 023mm^-2 . The operation supply voltage is from 2.5 to 6V, and the maximum supply current is 8.25μA. The designed three different out- puts are respectively about 203mV, 1.0V, and 2.05V at room temperature when the supply voltage is 4V. The circuit achieves a temperature coefficient of 31ppm/℃ in the temperature range of 0 to 100℃ and an average line regulation of ± 0. 203%/V. The voltage reference has been successfully applied in a white LED backlight driver chip.展开更多
基于斩波技术和旋转电流技术,设计了一款低噪声、高精度的线性霍尔传感器读出电路。在传统斩波仪表放大器的基础上,引入开关电容陷波滤波器和PTAT(Proportional To Absolute Temperature)电流补偿技术,实现了低纹波、低噪声和低温漂。采...基于斩波技术和旋转电流技术,设计了一款低噪声、高精度的线性霍尔传感器读出电路。在传统斩波仪表放大器的基础上,引入开关电容陷波滤波器和PTAT(Proportional To Absolute Temperature)电流补偿技术,实现了低纹波、低噪声和低温漂。采用SMIC 0.18μm CMOS工艺,在电源电压为3.6V,斩波频率为250kHz下,对所设计的电路进行仿真验证。通过Spectre仿真,电路-3dB带宽为11.5kHz,纹波抑制比为39.6dB,输入等效参考噪声功率谱密度PSD为15.4nV/√Hz,非线性均在0.5%以内,整体电路能在-40℃至150℃温度范围内精确而稳定的工作。展开更多
文摘A CMOS voltage reference, which is based on VGs and/x ΔGS in the weak inversion region, has been designed and implemented in standard 0.6μm CMOS technology. No diodes and parasitic bipolar junction transistors (BJTs) are used. The proposed voltage reference uses a current-mode topology by summing a PTAT current and a CTAT current into a re- sistor to generate the required reference voltage. It can also provide more than one reference voltage output, which is quite suitable for systems requiring many different reference voltages simultaneously. The occupied chip area is 0. 023mm^-2 . The operation supply voltage is from 2.5 to 6V, and the maximum supply current is 8.25μA. The designed three different out- puts are respectively about 203mV, 1.0V, and 2.05V at room temperature when the supply voltage is 4V. The circuit achieves a temperature coefficient of 31ppm/℃ in the temperature range of 0 to 100℃ and an average line regulation of ± 0. 203%/V. The voltage reference has been successfully applied in a white LED backlight driver chip.