期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
PT对称势下自旋轨道耦合玻色-爱因斯坦凝聚体的能带结构
1
作者 邵凯花 马金萍 +2 位作者 王青青 席保龙 石玉仁 《西北师范大学学报(自然科学版)》 CAS 2024年第3期42-47,共6页
数值研究PT对称势下具有自旋轨道耦合玻色-爱因斯坦凝聚体的能带结构.用傅立叶配置法求解布洛赫能带,分析PT对称晶格势的深度、虚部相对大小、自旋轨道耦合强度和拉比耦合强度对能带结构的影响.结果表明,第一、二能带的上下边沿随晶格... 数值研究PT对称势下具有自旋轨道耦合玻色-爱因斯坦凝聚体的能带结构.用傅立叶配置法求解布洛赫能带,分析PT对称晶格势的深度、虚部相对大小、自旋轨道耦合强度和拉比耦合强度对能带结构的影响.结果表明,第一、二能带的上下边沿随晶格深度的增加而上升,但能带宽度变窄;当PT对称晶格势的虚部大于临界值时,第一和第二能带发生重叠;随着自旋轨道耦合强度的增大,第一和第二能带的上下边界均减小;拉比耦合强度对能带结构也具有重要影响. 展开更多
关键词 玻色-爱因斯坦凝聚 pt对称势 自旋轨道耦合 能带结构
下载PDF
双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街
2
作者 邵凯花 席忠红 +5 位作者 席保龙 涂朴 王青青 马金萍 赵茜 石玉仁 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第11期37-45,共9页
数值研究了相混合态双组分玻色-爱因斯坦凝聚体(Bose-Einstein condensate,BEC)中PT (parity-time)对称势下的动力学.在障碍势不同的宽度和速度下发现了异步量子Kármán涡街、斜向漂移涡旋偶极子、V字形涡旋对、无规则量子湍... 数值研究了相混合态双组分玻色-爱因斯坦凝聚体(Bose-Einstein condensate,BEC)中PT (parity-time)对称势下的动力学.在障碍势不同的宽度和速度下发现了异步量子Kármán涡街、斜向漂移涡旋偶极子、V字形涡旋对、无规则量子湍流以及各种尾迹的组合模式.研究了作用在移动障碍势上的拖拽力,分析了涡旋对产生的力学机理.在不同障碍势宽度和速度下,系统地模拟了异步量子Kármán涡街和其他尾迹模式的参数区域.同样分析了PT对称势中具有增益-损耗强度的虚部对异步量子Kármán涡街稳定性的影响.最后,提供了一个实现异步量子Kármán涡街的实验方案. 展开更多
关键词 玻色-爱因斯坦凝聚体 Kármán涡街 pt对称势
下载PDF
Solving forward and inverse problems of the nonlinear Schrodinger equation with the generalized PT-symmetric Scarf-Ⅱpotential via PINN deep learning 被引量:3
3
作者 Jiaheng Li Biao Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第12期1-13,共13页
In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other ... In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other types of nonlinear physical models,we study the nonlinear Schrodinger equation(NLSE)with the generalized PT-symmetric Scarf-Ⅱpotential,which is an important physical model in many fields of nonlinear physics.Firstly,we choose three different initial values and the same Dinchlet boundaiy conditions to solve the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential via the PINN deep learning method,and the obtained results are compared with ttose denved by the toditional numencal methods.Then,we mvestigate effect of two factors(optimization steps and activation functions)on the performance of the PINN deep learning method in the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential.Ultimately,the data-driven coefficient discovery of the generalized PT-symmetric Scarf-Ⅱpotential or the dispersion and nonlinear items of the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential can be approximately ascertained by using the PINN deep learning method.Our results may be meaningful for further investigation of the nonlinear Schrodmger equation with the generalized PT-symmetric Scarf-Ⅱpotential in the deep learning. 展开更多
关键词 nonlinear Schrodinger equation generalized pt-symmetric scarf-Ⅱpotential physics-informed neural networks deep learning initial value and dirichlet boundary conditions data-driven coefficient discovery
原文传递
PT-Symmetric Matrix Quasi-Exactly Solvable Razhavi Potential
4
作者 Ancilla Nininahazwe 《Open Journal of Microphysics》 2020年第2期9-20,共12页
A PT-symmetric Hamiltonian associated with a trigonometric Razhavi potential is analyzed. Along the same lines of the general quasi-exactly solvable analytic method considered in the [1] [2] [3], three necessary and s... A PT-symmetric Hamiltonian associated with a trigonometric Razhavi potential is analyzed. Along the same lines of the general quasi-exactly solvable analytic method considered in the [1] [2] [3], three necessary and sufficient algebraic conditions for this Hamiltonian to have a finite-dimensional invariant vector space are established. This PT-symmetric 2 x 2 -matrix Hamiltonian is called quasi-exactly solvable (QES). 展开更多
关键词 pt-symmetric HAMILTONIAN Trigonometric potential QES ANALYTIC Method Invariant Vector Space
下载PDF
(2+1)-Dimensional Spatial Localized Modes in Cubic-Quintic Nonlinear Media with the PT-Symmetric Potentials
5
作者 陈翼翔 徐周翔 +2 位作者 蒋云峰 史进 徐方迁 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第7期71-80,共10页
We obtain exact spatial localized mode solutions of a(2+1)-dimensional nonlinear Schr¨odinger equation with constant diffraction and cubic-quintic nonlinearity in PT-symmetric potential, and study the linear stab... We obtain exact spatial localized mode solutions of a(2+1)-dimensional nonlinear Schr¨odinger equation with constant diffraction and cubic-quintic nonlinearity in PT-symmetric potential, and study the linear stability of these solutions. Based on these results, we further derive exact spatial localized mode solutions in a cubic-quintic medium with harmonic and PT-symmetric potentials. Moreover, the dynamical behaviors of spatial localized modes in the exponential diffraction decreasing waveguide and the periodic distributed amplification system are investigated. 展开更多
关键词 2D SPATIAL LOCALIZED modes pt-symmetric potential
原文传递
Gap solitons of spin–orbit-coupled Bose–Einstein condensates in PT periodic potential
6
作者 S Wang Y H Liu T F Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期140-145,共6页
We numerically investigate the gap solitons in Bose–Einstein condensates(BECs)with spin–orbit coupling(SOC)in the parity–time(PT)-symmetric periodic potential.We find that the depths and periods of the imaginary la... We numerically investigate the gap solitons in Bose–Einstein condensates(BECs)with spin–orbit coupling(SOC)in the parity–time(PT)-symmetric periodic potential.We find that the depths and periods of the imaginary lattice have an important influence on the shape and stability of these single-peak gap solitons and double-peak gap solitons in the first band gap.The dynamics of these gap solitons are checked by the split-time-step Crank–Nicolson method.It is proved that the depths of the imaginary part of the PT-symmetric periodic potential gradually increase,and the gap solitons become unstable.But the different periods of imaginary part hardly affect the stability of the gap solitons in the corresponding parameter interval. 展开更多
关键词 gap solitons spin–orbit coupling pt-symmetric periodic potential
下载PDF
Propagation of local spatial solitons in power-law nonlinear PT-symmetric potentials based on finite difference
7
作者 Hao Ji Yinghong Xu +1 位作者 Chaoqing Dai Lipu Zhang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第12期14-24,共11页
We consider the(2+1)-dimensional nonlinear Schrodinger equation with power-law nonlinearity under the parity-time-symmetry potential by using the Crank-Nicolson alternating direction implicit difference scheme,which c... We consider the(2+1)-dimensional nonlinear Schrodinger equation with power-law nonlinearity under the parity-time-symmetry potential by using the Crank-Nicolson alternating direction implicit difference scheme,which can also be used to solve general boundary problems under the premise of ensuring accuracy.We use linear Fourier analysis to verify the unconditional stability of the scheme.To demonstrate the effectiveness of the scheme,we compare the numerical results with the exact soliton solutions.Moreover,by using the scheme,we test the stability of the solitons under the small environmental disturbances. 展开更多
关键词 nonlinear Schrodinger equation localized spatial solitons pt-symmetric potential ADI difference scheme stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部