期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于并行SDAE-Seq2Seq模型的轴承寿命预测方法
1
作者 张俊杰 王海瑞 +1 位作者 李亚 朱贵富 《化工自动化及仪表》 CAS 2024年第3期427-437,共11页
基于数据驱动的轴承寿命预测方法大多需要人工提取退化特征,而且对于不同工况下的轴承需要进行针对性优化,也是依赖专家知识和经验进行特征提取。为此,提出一种并行堆叠降噪自动编码器算法(PSDAE)来提取轴承退化特征,并结合Seq2Seq模型... 基于数据驱动的轴承寿命预测方法大多需要人工提取退化特征,而且对于不同工况下的轴承需要进行针对性优化,也是依赖专家知识和经验进行特征提取。为此,提出一种并行堆叠降噪自动编码器算法(PSDAE)来提取轴承退化特征,并结合Seq2Seq模型预测轴承剩余寿命。通过PSDAE直接对原始振动信号进行降噪、降维,得到退化特征,通过神经网络的学习和训练自动获得不同工况下的轴承退化特征。其次,引入注意力机制,将提取的特征输入Seq2Seq模型进行训练,并在PHM2012数据集上验证模型的预测效果。实验结果表明:PSDAE通过并行集成方式降低了模型的训练参数和整体误差,提取的退化特征在单调性和可预测性方面优于堆叠降噪自动编码器(SDAE),使用该退化特征有效减少了Seq2Seq模型的预测误差,提高了预测得分,具有更好的预测效果和稳定性。 展开更多
关键词 并行堆叠降噪自动编码器算法 寿命预测 滚动轴承 特征提取 注意力机制 Seq2Seq模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部