Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allo...Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices(solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices(artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.展开更多
High-pressure chemistry has provided a huge boost to the development of scientific community.Pressure-induced emission(PIE)in halide perovskites is gradually showing its unique charm in both pressure sensing and optoe...High-pressure chemistry has provided a huge boost to the development of scientific community.Pressure-induced emission(PIE)in halide perovskites is gradually showing its unique charm in both pressure sensing and optoelectronic device applications.Moreover,the PIE retention of halide perovskites under ambient conditions is of great commercial value.Herein,we mainly focus on the potential applications of PIE and PIE retention in metal halide perovskites for scintillators and solid-state lighting.Based on the performance requirements of scintillator and single-component white light-emitting diodes(WLEDs),the significance of PIE and PIE retention is critically clarified,aiming to design and synthesize materials used for high-performance optoelectronic devices.This perspective not only demonstrates promising applications of PIE in the fields of scintillators and WLEDs,but also provides potential applications in display imaging and anti-counterfeiting of PIE materials.Furthermore,solving the scientific disputes that exist under ambient conditions is also simply discussed as an outlook by introducing high-pressure dimension to produce PIE.展开更多
Pressure produces closely packed,high-density materials,thereby providing a promising strategy to obtain high-energy-density materials.However,new phases or structures of energetic materials at high pressure are often...Pressure produces closely packed,high-density materials,thereby providing a promising strategy to obtain high-energy-density materials.However,new phases or structures of energetic materials at high pressure are often not quenchable under ambient conditions.In this work,high-pressure topochemical methodology is first introduced for the preparation of stable energetic materials under ambient conditions.A pressure-induced polymerizable energetic material named PIP-1 is designed and prepared.The experimental measurements demonstrate that the polymerization of PIP-1 is caused by the breakage of C≡C bonds and the generation of C=C bonds.In accord with the experimental results,density functional theory calculations further revealed that the monomer PIP-1 is polymerized to generate 1D PIP-1 tape,and the density of polymerized PIP-1 is increased by 4.9%upon decompression.The successful realization of high-energy-density structure using high pressure showcases a new design strategy for advanced polymerizable energetic materials.展开更多
In this work, the fundamental mechanism regarding the collision and pressure induced optic effect is elucidated. Based on the concept of the collision-relaxation/the pressure-release induced optic effect put forth her...In this work, the fundamental mechanism regarding the collision and pressure induced optic effect is elucidated. Based on the concept of the collision-relaxation/the pressure-release induced optic effect put forth here, a new laser technology may be developed. Furthermore, our work also makes the understanding the photon involved chemical reaction become much clear and rationalized.展开更多
Organic luminescent materials are very sensitive to external stimuli,such as pressure,temperature,and electric field.The luminescent properties of some organic luminescent materials significantly change under high pre...Organic luminescent materials are very sensitive to external stimuli,such as pressure,temperature,and electric field.The luminescent properties of some organic luminescent materials significantly change under high pressure.Some materials may show luminescence discoloration,whereas some may exhibit luminescence enhancement.These properties have many potential applications in anticounterfeiting,force sensor,data recording and storage,and luminescent devices,thereby greatly attracting the attention of scientists.In this review,the progress of research on these materials at high pressure in recent years is summarized.展开更多
Effects of pressure on lattice parameters, electronic, thermodynamic and mechanical properties of the fully ordered Ti_(2)AlNb orthorhombic phase were studied using first-principles calculations based on density funct...Effects of pressure on lattice parameters, electronic, thermodynamic and mechanical properties of the fully ordered Ti_(2)AlNb orthorhombic phase were studied using first-principles calculations based on density functional theory(DFT). The bonding nature for ordering orthorhombic Ti_(2)AlNb was revealed quantitatively through the electronic structure analyzing. The external pressures play limited roles in the elastic anisotropy of the alloy due to the outstanding dynamical and mechanical stabilities under pressure. However, the shear modulus of O phase manifests anisotropic, where {010} shear planes are the easiest planes to cleave among the principal planes under all pressures.The heat capacities, volume expansions and thermal expansion coefficients were calculated using the quasi-harmonic approximation model based on the phonon dispersion curves. Meanwhile, the bulk modulus, Young’s modulus,shear modulus and the hardness are promptly enhanced under pressure. The predicted results give hints to design Ti_(2)AlNb-based alloy as high-pressure applications.展开更多
Fluoride ferrous(FeF_(2))is viewed as a promising conversion cathode material for next-generation lithiumion batteries(LIBs)due to its high theoretical specific capacity and low cost.Unfortunately,issues such as poor ...Fluoride ferrous(FeF_(2))is viewed as a promising conversion cathode material for next-generation lithiumion batteries(LIBs)due to its high theoretical specific capacity and low cost.Unfortunately,issues such as poor intrinsic conductivity,iron dissolution,and phase separation hinder the application of FeF_(2)in highenergy cathodes.Here,a pressure-induced morphology control method is designed to prepare coralloidlike FeF_(2)nanocrystals with nitrogen-rich carbon coating(c-FeF_(2)@NC).The coralloid-like interconnected crystal structure of c-FeF_(2)@NC contributes to reducing interfacial resistance and enhancing the topotactic transformation during the conversion reaction,and the nitrogen-rich carbon(NC)coating can enhance interfacial stability and kinetic performance.When used as a conversion cathode for LIBs,c-FeF_(2)@NC exhibits a high initial reversible capacity of 503.57 mA h g^(-1)and excellent cycling stability of497.61 m A h g^(-1)with a low capacity decay of 1.19%over 50 cycles at 0.1 A/g.Even at 1 A/g,a stable capacity of 263.78 mA h g^(-1)can still be retained after 200 cycles.The capability of c-FeF_(2)@NC as a conversion cathode for sodium-ion batteries(SIBs)was also evaluated to expand its field of application.Furthermore,two kinds of full batteries have been assembled by employing c-FeF_(2)@NC as cathodes and quantitative limited-Li(LLi)and pre-lithiated reduced graphene oxide(PGO)as anodes,respectively,to envisage the feasibility of practical applications of conversion materials.展开更多
Motivated by the recent experimental work,the pressure-induced structural transition of well-known two-dimensional(2D)1T-Hf Te_(2)was investigated up to 50 GPa through the advanced CALYPSO structure search technique c...Motivated by the recent experimental work,the pressure-induced structural transition of well-known two-dimensional(2D)1T-Hf Te_(2)was investigated up to 50 GPa through the advanced CALYPSO structure search technique combined with the first-principles calculations.Our calculations suggested that the 1T-Hf Te_(2)will first transform to C2/m phase at 3.6 GPa with a volume reduction of 7.6%and then to P62m phase at 9.6 GPa with a volume collapse of 4.6%.The occurrences of 3D C2/m and P62m phases mainly originated from the enhanced Te-Te interlayer coupling and the drastic distortions of Hf-Te polyhedrons in P3m1 phase under compression.Concomitantly,the coordination number of Hf atoms increased from six in P3m1 to eight in C2/m and eventually to nine in P62m at elevated pressure.The metallic and semimetallic nature of C2/m and P62m phases were characterized,and the evidence of the reinforced covalent interactions of Te-Hf and Te-Te orbitals in these two novel high-pressure phases were manifested by the atom-projected electronic DOS and Bader charge.展开更多
Hydrostatic pressure-induced ferroelectric-antiferroelectric (FE-AFE) phase transition and the pressure dependence of dielectric properties in La-doped Pb(Zr,Sn, Ti)O3 ceramics were researched; the effects of temperat...Hydrostatic pressure-induced ferroelectric-antiferroelectric (FE-AFE) phase transition and the pressure dependence of dielectric properties in La-doped Pb(Zr,Sn, Ti)O3 ceramics were researched; the effects of temperature on hydrostatic pressure-induced FE-AFE phase transition and dielectric properties of the samples were studied. It was found that the temperature made the FE-AFE phase transition pressure decrease, and there existed the behavior of dielectric frequency dispersion and phase transition diffusion in the dielectric-pressure spectrum. These phenomena were very useful to enrich and develop the knowledge on the diffused phase transition behavior of polycomponent relaxor ferroelectric.展开更多
In the compacting process of the La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanosolids under the pressure range of 0.0-4.5 GPa, the apparent pressure-induced crystallite breaking phenomenon in these nanosolids was observed. With inc...In the compacting process of the La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanosolids under the pressure range of 0.0-4.5 GPa, the apparent pressure-induced crystallite breaking phenomenon in these nanosolids was observed. With increasing pressure up to 4.5 GPa, the average grain size decreases by 46% while the magnetization of nanosolids decrease by 40% and their coercive increases by 35%. This kind of breaking has a close relation to the existence of oxygen deficiency in La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanoparticles. A simple and convenient method for preparing the bulk nanosolids with a large number of clean interfaces has been suggested.展开更多
Step-scheme(S-scheme)heterojunctions in photocatalysts can provide novel and practical insight on promoting photogenerated carrier separation.The latter is critical in controlling the overall efficiency in one-step ph...Step-scheme(S-scheme)heterojunctions in photocatalysts can provide novel and practical insight on promoting photogenerated carrier separation.The latter is critical in controlling the overall efficiency in one-step photoexcitation systems.In this study,a nanosized BiVO4/Bi0.6Y0.4VO4 solid solution was prepared by a coprecipitation method following with hydrothermal or calcination processes.The S-scheme heterojunction was fabricated by in-situ pressure-induced transformations of bismuth vanadate from the tetragonal zircon phase to the monoclinic scheelite phase,which led to the formation of BiVO4 nanoparticles with a diameter of approximately 5 nm on the surface of BiVO_(4)/Bi_(0.6)Y_(0.4)VO_(4)/Bi_(0.6)Y_(0.4)VO_(4) with S-scheme heterojunctions showed significantly enhanced photocatalytic overall water splitting activity compared with using bare BiVO_(4)/Bi_(0.6)Y_(0.4)VO_(4).Characterization of the carrier dynamics demonstrated that a superior carrier separation through S-type heterojunctions might have caused the enhanced overall water splitting(OWS)activity.Surface photovoltage spectra and the results of selective photodeposition experiments indicated that the photogenerated holes mainly migrated to the BiVO4 nanoparticles in the heterojunction.This confirmed that the charge transfer route corresponds to an S-scheme rather than a type-II heterojunction mechanism under light illumination.This study presents a facile and efficient strategy to construct S-scheme heterojunctions through a pressure-induced phase transition.The results demonstrated that S-scheme junctions composed of different crystalline phases can boost the carrier separation capacity and eventually improve the photocatalytic OWS activity.展开更多
Zeolitic Imidazole Frameworks(ZIFs)are widely applied in nanomedicine for their high drug loading,suitable pore size,pH-responsive drug release,and so on.However,fast drug release during circulation,unexpected toxicit...Zeolitic Imidazole Frameworks(ZIFs)are widely applied in nanomedicine for their high drug loading,suitable pore size,pH-responsive drug release,and so on.However,fast drug release during circulation,unexpected toxicity to mice major organs,undesirable long-term accumulation in the lung and even death currently hinder their in vivo biomedical applications.Herein,we report an amorphous ZIF-8(aZIF-8)with high loading of 5-Fu through pressure-induced amorphization.This nano-system avoids early drug release during circulation and provides tumor microenvironment-responsive drug release with improved in vitro cell viability,and survival rate in in vivo evaluations as compared to ZIF-8.Furthermore,aZIF-8 shows longer blood circulation and lower lung accumulation than ZIF-8 at same injected doses.Less drug release during circulation,longer blood circulation,and better biocompatibility of aZIF-8/5-Fu significantly improves its therapeutic efficacy in ECA-109 tumorbearing mouse,and result in 100%survival rate over 50 days after treatment.Therefore,aZIF-8 with favorable biocompatibility and long blood circulation is expected to be a promising nano-system for efficacious cancer therapy in vivo.展开更多
Artificial photonic synapses have set off a new upsurge for mimicking a series of neural activities in recent years.In particular,the investigation of learning and memory behaviors with pressure or emotion and corresp...Artificial photonic synapses have set off a new upsurge for mimicking a series of neural activities in recent years.In particular,the investigation of learning and memory behaviors with pressure or emotion and corresponding mechanisms is currently the focus of more attention.Herein,a hippocampus-inspired device based on MoS_(2) for illumination time encoding is fabricated,in which the encryption technology is employed for data security.In addition,the pressureinduced memory behaviors with full memory function(memory trace)over time such as encoding,storage and retrieval are demonstrated,resulting from the decreasing positive photocurrent of the MoS;devices.The proposed mechanism of the memory effect when exposed to the light is elucidated in detail.Moreover,the effect of stress hormone on memory behavior is displayed via different illumination time periods and light intensities.These results indicate the potential application of MoS_(2) devices in artificial neural network.展开更多
Urea denatures proteins at different concentrations, depending on the experimental conditions and the protein. We in-vestigated the pressure-induced denaturation of bovine serum albumin (BSA) in the presence of subden...Urea denatures proteins at different concentrations, depending on the experimental conditions and the protein. We in-vestigated the pressure-induced denaturation of bovine serum albumin (BSA) in the presence of subdenaturing concen-trations of urea based on a two-state equilibrium. Pressure-induced denaturation was enhanced at urea concentrations ([U]) of 3.5 M to 8.0 M, with the free energy of denaturation at atmospheric pressure ranging from +5.0 to –2.5 kJ/mol of BSA. The m values appeared to be biphasic, with m1 and m2 of 0.92 and 2.35 kJ mol–1?M–1, respectively. Plots of versus ln[U] yielded values of u, the apparent stoichiometric coefficient, of 1.68 and 6.67 mol of urea/mol of BSA for m1 and m2, respectively. These values were compared with the m and u values of other monomeric proteins reported in or calculated from the literature. The very low values of u systematically observed for proteins were suggestive of heterogeneity in the free energy of denaturation. Thus, a u value of 140 mol of urea/mol of BSA may indicate the existence of a heterogeneous molecular population with respect to the free energy of dena-turation.展开更多
The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-press...The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and hightemperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn–O–Ge and Ge–O–Ge bond angles with increasing pressure,respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature.展开更多
The present calculations were performed on the basis of the Sanchez-Lacombe lattice fluid theory and the new combinatorial rules for block copolymer according to the experimental results on the pressure-induced compat...The present calculations were performed on the basis of the Sanchez-Lacombe lattice fluid theory and the new combinatorial rules for block copolymer according to the experimental results on the pressure-induced compatibility in poly(ethylene oxide) (PEO) and poly(ethylene ox-ide-b-dimethylsiloxane) (P(EO-b-DMS)) mixtures with UCST behavior. The study on enthalpy, combinatorial entropy, vacancy entropy and Gibbs energy upon mixture shows that San-chez-Lacombe fluid theory and the new combinatorial rules could describe the pressure-induced compatibility (PIC) of polymer mixtures with UCST behavior well.展开更多
Mechanoresponsive luminescent(MRL)materials have drawn extensive concern due to their potential applications in mechanical sensors,memory chips,and security inks;especially these possessing high emission efficiency.In...Mechanoresponsive luminescent(MRL)materials have drawn extensive concern due to their potential applications in mechanical sensors,memory chips,and security inks;especially these possessing high emission efficiency.In this work,we found trans-stilbene crystal exhibited two different pressure-induced emission enhancement(PIEE)behaviors at different pressure areas.The structural characterizations combined with density functional theory calculation indicate that the first emission enhancement was due to the decrease of nonradiation transition by the weaken of energy exchange process between atoms and lattice.And the second emission enhancement was attributed to the strengthen of C-H...C interactions from the non-planarization comformation.The results regarding the mechanoresponsive behavior of trans-stilbene offered a deep insight into PIEE from the structural point of view,which will facilitate the design of and search for high-performance MRL materials.展开更多
Near-infrared imaging can be used to reconstruct tissue optical properties from measurements of light propagation through tissue. But a single static image alone does not reveal much information about abnormal vascula...Near-infrared imaging can be used to reconstruct tissue optical properties from measurements of light propagation through tissue. But a single static image alone does not reveal much information about abnormal vascularization because light beams are heavily scattered and diffused by tissues, resulting in very low spatial resolution. If changes caused by re-distribution of blood volume and oxygenation level are detected, more pathophysiologic information will be revealed. The goal of this work is to understand how the pressure that is applied to the surface affects the composition of the tissue and illustrate that the pressure-induced changes are significant and that are likely dependent on the tissue composition. In this paper, we propose a novel method to make continue-wave light illuminate the vivo tissue with external pressure, using the CCD camera to acquire sequential dynamic images during the whole course. The dynamic response of the tissue to pressure modulation is carried in the intensity variations among different images. This trial can prove that the pressure can influence the blood capacity and the oxygen saturation of the tissue in near-infrared imaging. The result can be output by dynamic value curves of the light intensity, at the same time some algorithms can be used to process image sequences, accumulating continuous physiology information in the resulting images, so the blood vessels can be shown more obviously. This is very useful to the physicians for the information of the blood vessel implicates much pathology information.展开更多
Nearly all displacive transitions have been considered to be continuous or second order, and the rigid unit mode (RUM) provides a natural candidate for the soft mode. However, in-situ X-ray diffraction and Raman mea...Nearly all displacive transitions have been considered to be continuous or second order, and the rigid unit mode (RUM) provides a natural candidate for the soft mode. However, in-situ X-ray diffraction and Raman measurements show clearly the first-order evidences for the scheelite-to-fergusonite displacive transition in SaWO4: a 1.6% volume collapse, coexistence of phases, and hysteresis on release of pressure. Such first-order signatures are found to be the same as the soft modes in BaWO4, which indicates the scheelite-to-fergusonite displacive phase transition hides a deeper physical mechanism. By the refinement of atomic displacement parameters, we further show that the first-order character of this phase transition stems from a coupling of large compression of soft BaOs polyhedrons to the small displacive distortion of rigid WO4 tetrahedrons. Such a coupling will lead to a deeper physical insight in the phase transition of the common scheelite-structured compounds.展开更多
In situ high-pressure experiments of Co2P are carried out by means of angle dispersive X-ray diffraction with diamond anvil cell technique. No phase transition is observed in the present pressure range up to 15 GPa at...In situ high-pressure experiments of Co2P are carried out by means of angle dispersive X-ray diffraction with diamond anvil cell technique. No phase transition is observed in the present pressure range up to 15 GPa at room temperature, even at high temperature and 15 GPa. Results of compression for Co2P are well presented by the second-order Birch-Murnaghan equation of state with V0 = 130.99(2) Aa (1 A=0.1 nm) and K0 = 160(3) GPa. Axial compressibilities are described by compressional modulus of the axis: Ka = 123(2) GPa, Kb = 167(8) GPa and Kc = 220(7) GPa. Theoretical calculations further support the experimental results and indicate that C23-type Co2P is stable at high pressure compared with the C22-type phase.展开更多
基金the National Key Research and Development Program of China (2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory (2021SLABFK02)the National Natural Science Foundation of China (21961160720)。
文摘Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices(solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices(artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
基金Jilin Provincial Science and Technology Development Program,Grant/Award Number:20220101002JCNational Natural Science Foundation of China,Grant/Award Number:12174144Fundamental Research Funds for the Central Universities。
文摘High-pressure chemistry has provided a huge boost to the development of scientific community.Pressure-induced emission(PIE)in halide perovskites is gradually showing its unique charm in both pressure sensing and optoelectronic device applications.Moreover,the PIE retention of halide perovskites under ambient conditions is of great commercial value.Herein,we mainly focus on the potential applications of PIE and PIE retention in metal halide perovskites for scintillators and solid-state lighting.Based on the performance requirements of scintillator and single-component white light-emitting diodes(WLEDs),the significance of PIE and PIE retention is critically clarified,aiming to design and synthesize materials used for high-performance optoelectronic devices.This perspective not only demonstrates promising applications of PIE in the fields of scintillators and WLEDs,but also provides potential applications in display imaging and anti-counterfeiting of PIE materials.Furthermore,solving the scientific disputes that exist under ambient conditions is also simply discussed as an outlook by introducing high-pressure dimension to produce PIE.
基金supported by the Presidential Foundation of CAEP(grant no.YZJJLX2019006)the National Science Foundation of China(grant nos.22075259 and 22175157).
文摘Pressure produces closely packed,high-density materials,thereby providing a promising strategy to obtain high-energy-density materials.However,new phases or structures of energetic materials at high pressure are often not quenchable under ambient conditions.In this work,high-pressure topochemical methodology is first introduced for the preparation of stable energetic materials under ambient conditions.A pressure-induced polymerizable energetic material named PIP-1 is designed and prepared.The experimental measurements demonstrate that the polymerization of PIP-1 is caused by the breakage of C≡C bonds and the generation of C=C bonds.In accord with the experimental results,density functional theory calculations further revealed that the monomer PIP-1 is polymerized to generate 1D PIP-1 tape,and the density of polymerized PIP-1 is increased by 4.9%upon decompression.The successful realization of high-energy-density structure using high pressure showcases a new design strategy for advanced polymerizable energetic materials.
文摘In this work, the fundamental mechanism regarding the collision and pressure induced optic effect is elucidated. Based on the concept of the collision-relaxation/the pressure-release induced optic effect put forth here, a new laser technology may be developed. Furthermore, our work also makes the understanding the photon involved chemical reaction become much clear and rationalized.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.21725304 and 11774120)the Chang Jiang Scholars Program of China(No.T2016051)the Fundamental Research Funds for the Central Universities
文摘Organic luminescent materials are very sensitive to external stimuli,such as pressure,temperature,and electric field.The luminescent properties of some organic luminescent materials significantly change under high pressure.Some materials may show luminescence discoloration,whereas some may exhibit luminescence enhancement.These properties have many potential applications in anticounterfeiting,force sensor,data recording and storage,and luminescent devices,thereby greatly attracting the attention of scientists.In this review,the progress of research on these materials at high pressure in recent years is summarized.
基金financially supported by the National Natural Science Foundation of China (Nos.50971043 and 51171046)the Research Fund for the Doctoral Program of Higher Education of China (No.20133514110006)+1 种基金the Natural Science Foundation of Fujian Province,China (No.2014J01176)the Program for New Century Excellent Talents in University of Fujian Province,China (No.JA10013)。
文摘Effects of pressure on lattice parameters, electronic, thermodynamic and mechanical properties of the fully ordered Ti_(2)AlNb orthorhombic phase were studied using first-principles calculations based on density functional theory(DFT). The bonding nature for ordering orthorhombic Ti_(2)AlNb was revealed quantitatively through the electronic structure analyzing. The external pressures play limited roles in the elastic anisotropy of the alloy due to the outstanding dynamical and mechanical stabilities under pressure. However, the shear modulus of O phase manifests anisotropic, where {010} shear planes are the easiest planes to cleave among the principal planes under all pressures.The heat capacities, volume expansions and thermal expansion coefficients were calculated using the quasi-harmonic approximation model based on the phonon dispersion curves. Meanwhile, the bulk modulus, Young’s modulus,shear modulus and the hardness are promptly enhanced under pressure. The predicted results give hints to design Ti_(2)AlNb-based alloy as high-pressure applications.
基金supported by Foundation for the Sichuan University and Zigong City Joint research project(2021CDZG-2)the Foundation for the Sichuan University and Yibin City Strategic Cooperation Project(2020CDYB-32)the Guangxi Key Laboratory of Low Carbon Energy Material(2020GKLLCEM02)。
文摘Fluoride ferrous(FeF_(2))is viewed as a promising conversion cathode material for next-generation lithiumion batteries(LIBs)due to its high theoretical specific capacity and low cost.Unfortunately,issues such as poor intrinsic conductivity,iron dissolution,and phase separation hinder the application of FeF_(2)in highenergy cathodes.Here,a pressure-induced morphology control method is designed to prepare coralloidlike FeF_(2)nanocrystals with nitrogen-rich carbon coating(c-FeF_(2)@NC).The coralloid-like interconnected crystal structure of c-FeF_(2)@NC contributes to reducing interfacial resistance and enhancing the topotactic transformation during the conversion reaction,and the nitrogen-rich carbon(NC)coating can enhance interfacial stability and kinetic performance.When used as a conversion cathode for LIBs,c-FeF_(2)@NC exhibits a high initial reversible capacity of 503.57 mA h g^(-1)and excellent cycling stability of497.61 m A h g^(-1)with a low capacity decay of 1.19%over 50 cycles at 0.1 A/g.Even at 1 A/g,a stable capacity of 263.78 mA h g^(-1)can still be retained after 200 cycles.The capability of c-FeF_(2)@NC as a conversion cathode for sodium-ion batteries(SIBs)was also evaluated to expand its field of application.Furthermore,two kinds of full batteries have been assembled by employing c-FeF_(2)@NC as cathodes and quantitative limited-Li(LLi)and pre-lithiated reduced graphene oxide(PGO)as anodes,respectively,to envisage the feasibility of practical applications of conversion materials.
基金Project supported by the National Natural Science Foundation of China(Grant No.11964026)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant Nos.2023-JC-YB-021,2022JM-035,and 2022JQ-008)。
文摘Motivated by the recent experimental work,the pressure-induced structural transition of well-known two-dimensional(2D)1T-Hf Te_(2)was investigated up to 50 GPa through the advanced CALYPSO structure search technique combined with the first-principles calculations.Our calculations suggested that the 1T-Hf Te_(2)will first transform to C2/m phase at 3.6 GPa with a volume reduction of 7.6%and then to P62m phase at 9.6 GPa with a volume collapse of 4.6%.The occurrences of 3D C2/m and P62m phases mainly originated from the enhanced Te-Te interlayer coupling and the drastic distortions of Hf-Te polyhedrons in P3m1 phase under compression.Concomitantly,the coordination number of Hf atoms increased from six in P3m1 to eight in C2/m and eventually to nine in P62m at elevated pressure.The metallic and semimetallic nature of C2/m and P62m phases were characterized,and the evidence of the reinforced covalent interactions of Te-Hf and Te-Te orbitals in these two novel high-pressure phases were manifested by the atom-projected electronic DOS and Bader charge.
基金This work was supported by the National Defensive Pre-research Fund of China (Grand No. 98J12.1.9).
文摘Hydrostatic pressure-induced ferroelectric-antiferroelectric (FE-AFE) phase transition and the pressure dependence of dielectric properties in La-doped Pb(Zr,Sn, Ti)O3 ceramics were researched; the effects of temperature on hydrostatic pressure-induced FE-AFE phase transition and dielectric properties of the samples were studied. It was found that the temperature made the FE-AFE phase transition pressure decrease, and there existed the behavior of dielectric frequency dispersion and phase transition diffusion in the dielectric-pressure spectrum. These phenomena were very useful to enrich and develop the knowledge on the diffused phase transition behavior of polycomponent relaxor ferroelectric.
文摘In the compacting process of the La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanosolids under the pressure range of 0.0-4.5 GPa, the apparent pressure-induced crystallite breaking phenomenon in these nanosolids was observed. With increasing pressure up to 4.5 GPa, the average grain size decreases by 46% while the magnetization of nanosolids decrease by 40% and their coercive increases by 35%. This kind of breaking has a close relation to the existence of oxygen deficiency in La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanoparticles. A simple and convenient method for preparing the bulk nanosolids with a large number of clean interfaces has been suggested.
文摘Step-scheme(S-scheme)heterojunctions in photocatalysts can provide novel and practical insight on promoting photogenerated carrier separation.The latter is critical in controlling the overall efficiency in one-step photoexcitation systems.In this study,a nanosized BiVO4/Bi0.6Y0.4VO4 solid solution was prepared by a coprecipitation method following with hydrothermal or calcination processes.The S-scheme heterojunction was fabricated by in-situ pressure-induced transformations of bismuth vanadate from the tetragonal zircon phase to the monoclinic scheelite phase,which led to the formation of BiVO4 nanoparticles with a diameter of approximately 5 nm on the surface of BiVO_(4)/Bi_(0.6)Y_(0.4)VO_(4)/Bi_(0.6)Y_(0.4)VO_(4) with S-scheme heterojunctions showed significantly enhanced photocatalytic overall water splitting activity compared with using bare BiVO_(4)/Bi_(0.6)Y_(0.4)VO_(4).Characterization of the carrier dynamics demonstrated that a superior carrier separation through S-type heterojunctions might have caused the enhanced overall water splitting(OWS)activity.Surface photovoltage spectra and the results of selective photodeposition experiments indicated that the photogenerated holes mainly migrated to the BiVO4 nanoparticles in the heterojunction.This confirmed that the charge transfer route corresponds to an S-scheme rather than a type-II heterojunction mechanism under light illumination.This study presents a facile and efficient strategy to construct S-scheme heterojunctions through a pressure-induced phase transition.The results demonstrated that S-scheme junctions composed of different crystalline phases can boost the carrier separation capacity and eventually improve the photocatalytic OWS activity.
基金financially supported by National Key R&D Program of China(2018YFC0910601)Natural Science Foundation of China(Grant No.81871411,32011530115)+1 种基金Youth Innovation Promotion Association Foundation of CAS(2017340)Key R&D Program of Zhejiang Province(2020C03110)。
文摘Zeolitic Imidazole Frameworks(ZIFs)are widely applied in nanomedicine for their high drug loading,suitable pore size,pH-responsive drug release,and so on.However,fast drug release during circulation,unexpected toxicity to mice major organs,undesirable long-term accumulation in the lung and even death currently hinder their in vivo biomedical applications.Herein,we report an amorphous ZIF-8(aZIF-8)with high loading of 5-Fu through pressure-induced amorphization.This nano-system avoids early drug release during circulation and provides tumor microenvironment-responsive drug release with improved in vitro cell viability,and survival rate in in vivo evaluations as compared to ZIF-8.Furthermore,aZIF-8 shows longer blood circulation and lower lung accumulation than ZIF-8 at same injected doses.Less drug release during circulation,longer blood circulation,and better biocompatibility of aZIF-8/5-Fu significantly improves its therapeutic efficacy in ECA-109 tumorbearing mouse,and result in 100%survival rate over 50 days after treatment.Therefore,aZIF-8 with favorable biocompatibility and long blood circulation is expected to be a promising nano-system for efficacious cancer therapy in vivo.
基金supported by the Innovation Group Project of Sichuan Province(20CXTD0090)the Fundamental Research Funds for the Central Universities(ZYGX2019Z018)+4 种基金the University of Electronic Science and Technology of China(UESTC)Shared Research Facilities of Electromagnetic Wave and Matter Interaction(Y0301901290100201)the National Natural Science Foundation of China(62004025)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,244125)the UESTC 100-Talent Project FundChina Postdoctoral Science Foundation(244125)。
文摘Artificial photonic synapses have set off a new upsurge for mimicking a series of neural activities in recent years.In particular,the investigation of learning and memory behaviors with pressure or emotion and corresponding mechanisms is currently the focus of more attention.Herein,a hippocampus-inspired device based on MoS_(2) for illumination time encoding is fabricated,in which the encryption technology is employed for data security.In addition,the pressureinduced memory behaviors with full memory function(memory trace)over time such as encoding,storage and retrieval are demonstrated,resulting from the decreasing positive photocurrent of the MoS;devices.The proposed mechanism of the memory effect when exposed to the light is elucidated in detail.Moreover,the effect of stress hormone on memory behavior is displayed via different illumination time periods and light intensities.These results indicate the potential application of MoS_(2) devices in artificial neural network.
文摘Urea denatures proteins at different concentrations, depending on the experimental conditions and the protein. We in-vestigated the pressure-induced denaturation of bovine serum albumin (BSA) in the presence of subdenaturing concen-trations of urea based on a two-state equilibrium. Pressure-induced denaturation was enhanced at urea concentrations ([U]) of 3.5 M to 8.0 M, with the free energy of denaturation at atmospheric pressure ranging from +5.0 to –2.5 kJ/mol of BSA. The m values appeared to be biphasic, with m1 and m2 of 0.92 and 2.35 kJ mol–1?M–1, respectively. Plots of versus ln[U] yielded values of u, the apparent stoichiometric coefficient, of 1.68 and 6.67 mol of urea/mol of BSA for m1 and m2, respectively. These values were compared with the m and u values of other monomeric proteins reported in or calculated from the literature. The very low values of u systematically observed for proteins were suggestive of heterogeneity in the free energy of denaturation. Thus, a u value of 140 mol of urea/mol of BSA may indicate the existence of a heterogeneous molecular population with respect to the free energy of dena-turation.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences(Grant No.U1332104)
文摘The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and hightemperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn–O–Ge and Ge–O–Ge bond angles with increasing pressure,respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature.
基金supported by the National Natural Science Foundation of China for Special(Grant Nos.50253002,50027001)General(Grant Nos.50073024,90101001,20074037)+3 种基金Major(Grant No.50290090)the Special Pro-Funds for Major State Basic Research Projects(Grant No.2002CCAD4000)the Special Funds for Major State Basic Researcb Projects(Grant No.G1999064800)the Fund for Distinguished Young Scholars of China(Grant No.59825113).
文摘The present calculations were performed on the basis of the Sanchez-Lacombe lattice fluid theory and the new combinatorial rules for block copolymer according to the experimental results on the pressure-induced compatibility in poly(ethylene oxide) (PEO) and poly(ethylene ox-ide-b-dimethylsiloxane) (P(EO-b-DMS)) mixtures with UCST behavior. The study on enthalpy, combinatorial entropy, vacancy entropy and Gibbs energy upon mixture shows that San-chez-Lacombe fluid theory and the new combinatorial rules could describe the pressure-induced compatibility (PIC) of polymer mixtures with UCST behavior well.
基金the National Natural Science Foundation of China(Grant Nos.21725304,11774120,and 11904010)the Chang Jiang Scholars Program of China(Grant No.T2016051)+2 种基金Changbai Mountain Scholars Program(Grant No.2013007)the Science and Technology Innovation Program of Shanxi Province,China(Grant Nos.2020L0540 and 2020L0544)Scientific Research Fund of XinZhou Teachers University(Grant No.2019KY04).
文摘Mechanoresponsive luminescent(MRL)materials have drawn extensive concern due to their potential applications in mechanical sensors,memory chips,and security inks;especially these possessing high emission efficiency.In this work,we found trans-stilbene crystal exhibited two different pressure-induced emission enhancement(PIEE)behaviors at different pressure areas.The structural characterizations combined with density functional theory calculation indicate that the first emission enhancement was due to the decrease of nonradiation transition by the weaken of energy exchange process between atoms and lattice.And the second emission enhancement was attributed to the strengthen of C-H...C interactions from the non-planarization comformation.The results regarding the mechanoresponsive behavior of trans-stilbene offered a deep insight into PIEE from the structural point of view,which will facilitate the design of and search for high-performance MRL materials.
文摘Near-infrared imaging can be used to reconstruct tissue optical properties from measurements of light propagation through tissue. But a single static image alone does not reveal much information about abnormal vascularization because light beams are heavily scattered and diffused by tissues, resulting in very low spatial resolution. If changes caused by re-distribution of blood volume and oxygenation level are detected, more pathophysiologic information will be revealed. The goal of this work is to understand how the pressure that is applied to the surface affects the composition of the tissue and illustrate that the pressure-induced changes are significant and that are likely dependent on the tissue composition. In this paper, we propose a novel method to make continue-wave light illuminate the vivo tissue with external pressure, using the CCD camera to acquire sequential dynamic images during the whole course. The dynamic response of the tissue to pressure modulation is carried in the intensity variations among different images. This trial can prove that the pressure can influence the blood capacity and the oxygen saturation of the tissue in near-infrared imaging. The result can be output by dynamic value curves of the light intensity, at the same time some algorithms can be used to process image sequences, accumulating continuous physiology information in the resulting images, so the blood vessels can be shown more obviously. This is very useful to the physicians for the information of the blood vessel implicates much pathology information.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179030 and 90714011)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-SW-N20)
文摘Nearly all displacive transitions have been considered to be continuous or second order, and the rigid unit mode (RUM) provides a natural candidate for the soft mode. However, in-situ X-ray diffraction and Raman measurements show clearly the first-order evidences for the scheelite-to-fergusonite displacive transition in SaWO4: a 1.6% volume collapse, coexistence of phases, and hysteresis on release of pressure. Such first-order signatures are found to be the same as the soft modes in BaWO4, which indicates the scheelite-to-fergusonite displacive phase transition hides a deeper physical mechanism. By the refinement of atomic displacement parameters, we further show that the first-order character of this phase transition stems from a coupling of large compression of soft BaOs polyhedrons to the small displacive distortion of rigid WO4 tetrahedrons. Such a coupling will lead to a deeper physical insight in the phase transition of the common scheelite-structured compounds.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 40972029 and 41072027)
文摘In situ high-pressure experiments of Co2P are carried out by means of angle dispersive X-ray diffraction with diamond anvil cell technique. No phase transition is observed in the present pressure range up to 15 GPa at room temperature, even at high temperature and 15 GPa. Results of compression for Co2P are well presented by the second-order Birch-Murnaghan equation of state with V0 = 130.99(2) Aa (1 A=0.1 nm) and K0 = 160(3) GPa. Axial compressibilities are described by compressional modulus of the axis: Ka = 123(2) GPa, Kb = 167(8) GPa and Kc = 220(7) GPa. Theoretical calculations further support the experimental results and indicate that C23-type Co2P is stable at high pressure compared with the C22-type phase.