To date, little is still known about how alpine species occurring in the Qinghai-Tibetan Plateau (QTP) responded to past climatic oscillations. Here, by using variations of the chloroplast trnT-L, we examined the ge...To date, little is still known about how alpine species occurring in the Qinghai-Tibetan Plateau (QTP) responded to past climatic oscillations. Here, by using variations of the chloroplast trnT-L, we examined the genetic distribution pattern of 101 individuals of Potentilla glabra, comprising both the interior QTP and the plateau edge. Phylogenetic and network analyses of 31 recovered haplotypes identified three tentative clades (A, B and C). Analysis of molecular variance (AMOVA) revealed that most of the genetic variability was found within populations (0.693), while differentiations between populations were obviously distinct (Fst -- 0.307). Two independent range expansions within clades A and B occurring at approximately 316 and 201 thousand years ago (kya) were recovered from the hierarchical mismatch analysis, and these two expansions were also confirmed by Fu's Fs values and 'g' tests. However, distant distributions of clade C and private haplotypes from clades A and B suggest that they had survived the Last Glacial Maximum (LGM) and previous glaciers in situ since their origins. Our findings based on available limited samples support that multiple refugia of a few cold-enduring species had been maintained in the QTP platform during LGM and/or previous glacial stages.展开更多
The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear....The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear. In this study, primary cultured hippocampal neurons from neonatal rats were incubated in 95% N2 and 5% CO2 for 4 hours. Results indicated that hypoxic injury decreased the viability of neurons, increased the expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein. Pretreatment with 0.25, 0.062 5, 0.015 6 mg/mL n-butanol extract of Potentilla anserine L. led to a significant increase in cell viability. Expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein, were attenuated. The neuroprotective effect of n-butanol extract of Potentilla anserine L. was equivalent to tanshinone IIA. Our data suggest that the n-butanol extract of Potentilla anserine L. could protect primary hippocampal neurons from hypoxic injury by deactivating mitochondrial cell death.展开更多
The study by the eddy covariance technique in the alpine shrub meadow of the Qing-hai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual ...The study by the eddy covariance technique in the alpine shrub meadow of the Qing-hai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m-2 respectively, yielding an average of 253.1 gCO2·m-2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g Cm"2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m-2 in 2003 and 74.9 g C·m-2 in 2004) in the corresponding plant growing season.展开更多
Objective To investigate the protective effect of n-butanol extract from the roots of Potentilla anserina (NP) on hypoxic hippocampal neurons in neonatal rats. Methods Primary cultured hippocampal neurons were pretrea...Objective To investigate the protective effect of n-butanol extract from the roots of Potentilla anserina (NP) on hypoxic hippocampal neurons in neonatal rats. Methods Primary cultured hippocampal neurons were pretreated with different concentration of NP (0.25, 0.0625, and 0.0156 mg/mL) before incubation in a low oxygen (0.1%) environment for 4 h. Cell viability was evaluated by Trypan blue staining assay. Lactate dehydrogenase (LDH) released by neurons into the medium was measured. The activity of superoxide dismutase (SOD) in cell cytosol was determined using nitroblue tetrazolium. Morphological changes and mitochondrial function were observed by transmission electron microscopy. Results Hypoxic injury could decrease the cells viability of neuron, enhance LDH release (P < 0.05), decrease SOD activity, and increase mitochondrial injury. Pretreatment with NP significantly increased cell viability, decreased LDH release (P < 0.05), promoted SOD activity (P < 0.05), and remarkably improved cellular ultra-microstructure compared with the model group. Conclusion NP could protect the primary hippocampal neurons from hypoxic injury by attenuating mitochondrial cell death.展开更多
Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, a...Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, are common in many ecosystems. The strategies by which clonal plants adapt to this type of heterogeneous environment were examined in three stoloniferous herbs,Potentilla reptans L. var. sericophylla Franch., P. anserina L. and Halerpestes ruthenica (Jacq.) Qvcz., commonly inhabiting forest understories, grasslands and low saline meadows, respectively. As pairs of connected ramets were subjected to reciprocal patchiness of light and nutrients, stolon connection between the two ramets significantly enhanced biomass of both ramet growing in low light intensity but high soil nutrient condition (LH ramet) and ramet growing in high light intensity but low soil nutrient condition (HL ramet) as well as whole ramet pairs (consisting of LH ramets and HL ramets). Additionally, stolon connection greatly increased root/shoot ratio of LH ramet while significantly decreased that of HL ramet. The results indicate that a reciprocal transportation of resources between interconnected ramets and a functional specialization of ramets in uptake of abundant resources occurred. By resource sharing and functional specialization, clonal plants can efficiently acquire locally abundant resources and buffer the stress caused by reciprocal patchiness of resources.展开更多
基金Supported by the Frontier Project of the Knowledge Innovation Program of Northwest Plateau Institute of Biology of the Chinese Academy of Sciences,National Natural Science Foundation of China (30725004)the Programfor New Century Excellent Talents,Ministry of Education of China (NCET-05-0886)a Grant-in Aid for Scientific Research (A) from the Ministry of Education,Culture,Sports,Science and Technology,Government of Japan(18255004)
文摘To date, little is still known about how alpine species occurring in the Qinghai-Tibetan Plateau (QTP) responded to past climatic oscillations. Here, by using variations of the chloroplast trnT-L, we examined the genetic distribution pattern of 101 individuals of Potentilla glabra, comprising both the interior QTP and the plateau edge. Phylogenetic and network analyses of 31 recovered haplotypes identified three tentative clades (A, B and C). Analysis of molecular variance (AMOVA) revealed that most of the genetic variability was found within populations (0.693), while differentiations between populations were obviously distinct (Fst -- 0.307). Two independent range expansions within clades A and B occurring at approximately 316 and 201 thousand years ago (kya) were recovered from the hierarchical mismatch analysis, and these two expansions were also confirmed by Fu's Fs values and 'g' tests. However, distant distributions of clade C and private haplotypes from clades A and B suggest that they had survived the Last Glacial Maximum (LGM) and previous glaciers in situ since their origins. Our findings based on available limited samples support that multiple refugia of a few cold-enduring species had been maintained in the QTP platform during LGM and/or previous glacial stages.
基金supported by the National Natural Science Foundation of China, No. 30672774 and No. 81073152the Great Program of Science Foundation of Tianjin, No.10JCZDJC21100
文摘The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear. In this study, primary cultured hippocampal neurons from neonatal rats were incubated in 95% N2 and 5% CO2 for 4 hours. Results indicated that hypoxic injury decreased the viability of neurons, increased the expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein. Pretreatment with 0.25, 0.062 5, 0.015 6 mg/mL n-butanol extract of Potentilla anserine L. led to a significant increase in cell viability. Expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein, were attenuated. The neuroprotective effect of n-butanol extract of Potentilla anserine L. was equivalent to tanshinone IIA. Our data suggest that the n-butanol extract of Potentilla anserine L. could protect primary hippocampal neurons from hypoxic injury by deactivating mitochondrial cell death.
基金This work was mainly supported by the Knowledge Innovation Program of the Chinese Acad-emy of Sciences (Grant No. KZCX1-SW-01-01A) the State Key Basic Research Plan of China (Grant No.2002CB412 501).
文摘The study by the eddy covariance technique in the alpine shrub meadow of the Qing-hai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m-2 respectively, yielding an average of 253.1 gCO2·m-2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g Cm"2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m-2 in 2003 and 74.9 g C·m-2 in 2004) in the corresponding plant growing season.
基金Natural Science Foundation of China (30672774 81073152)the Great Program of Science Foundation of Tianjin (10JCZDJC21100)
文摘Objective To investigate the protective effect of n-butanol extract from the roots of Potentilla anserina (NP) on hypoxic hippocampal neurons in neonatal rats. Methods Primary cultured hippocampal neurons were pretreated with different concentration of NP (0.25, 0.0625, and 0.0156 mg/mL) before incubation in a low oxygen (0.1%) environment for 4 h. Cell viability was evaluated by Trypan blue staining assay. Lactate dehydrogenase (LDH) released by neurons into the medium was measured. The activity of superoxide dismutase (SOD) in cell cytosol was determined using nitroblue tetrazolium. Morphological changes and mitochondrial function were observed by transmission electron microscopy. Results Hypoxic injury could decrease the cells viability of neuron, enhance LDH release (P < 0.05), decrease SOD activity, and increase mitochondrial injury. Pretreatment with NP significantly increased cell viability, decreased LDH release (P < 0.05), promoted SOD activity (P < 0.05), and remarkably improved cellular ultra-microstructure compared with the model group. Conclusion NP could protect the primary hippocampal neurons from hypoxic injury by attenuating mitochondrial cell death.
文摘Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, are common in many ecosystems. The strategies by which clonal plants adapt to this type of heterogeneous environment were examined in three stoloniferous herbs,Potentilla reptans L. var. sericophylla Franch., P. anserina L. and Halerpestes ruthenica (Jacq.) Qvcz., commonly inhabiting forest understories, grasslands and low saline meadows, respectively. As pairs of connected ramets were subjected to reciprocal patchiness of light and nutrients, stolon connection between the two ramets significantly enhanced biomass of both ramet growing in low light intensity but high soil nutrient condition (LH ramet) and ramet growing in high light intensity but low soil nutrient condition (HL ramet) as well as whole ramet pairs (consisting of LH ramets and HL ramets). Additionally, stolon connection greatly increased root/shoot ratio of LH ramet while significantly decreased that of HL ramet. The results indicate that a reciprocal transportation of resources between interconnected ramets and a functional specialization of ramets in uptake of abundant resources occurred. By resource sharing and functional specialization, clonal plants can efficiently acquire locally abundant resources and buffer the stress caused by reciprocal patchiness of resources.