The aryldiimine NCN-pincer stabilized neodymium dichloride combined with aluminum alkyls established a new type of homogeneous binary neutral Ziegler-Natta catalyst system.This system exhibited high activity and high ...The aryldiimine NCN-pincer stabilized neodymium dichloride combined with aluminum alkyls established a new type of homogeneous binary neutral Ziegler-Natta catalyst system.This system exhibited high activity and high cis-1,4 selectivity for the polymerization of isoprene (Tp=20 °C,98.2%;Tp=-20 °C,】 99%).Such catalytic performances remained under a broad range of polymerization temperatures and monomer-to-neodymium ratios (from 500 to 8000),reaching high number-average molecular weight (Mn=1582 kg/mol) and relatively narrow molecular weight distribution (PDI=1.68),which was,however,influenced by the amount and bulkiness of aluminum alkyls.Dynamic investigation of the polymerization was performed,which showed the number-average molecular weight of the resultant polyisoprene had an almost linear correlation with the conversion,suggesting,in some degree,the polymerization with this catalytic system was controllable.展开更多
The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained poly...The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).展开更多
China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coor...China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis-1,4-polybutatine rubber and cis-1,4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.展开更多
The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, phy...The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, physio-mechanical and dynamic mechanical properties. Compared with NR, PI loaded with the same amount of WCB (PI/WCB) exhibited shorter scorch time and optimal cure time, indicating that WCB fillers are comparatively easier to conjugate with PI. The tensile strength and elongation at break decreased with WCB filling in both PI and NR vulcanizates. The hardness of the rubber vulcanizates increased with the WCB filling in the rubber matrix. PI/WCB blends exhibited smaller hardness data, lower tensile strength, as well as lower elongation at break and tensile stress. Increasing the amount of WCB in rubber matrix induced the Payne effect. However, the Payne effect is much more obvious for the PI/WCB system, and PI/WCB also displayed higher storage modulus whereas lower loss modulus and loss tangent than NR/WCB, which could all be attributed to the poor dispersibilities of WCB in the PI matrix.展开更多
基金supported by the National Natural Science Foundation of China (20674081,20934006) the Ministry of Science and Technology of China (2005CB623802,2009AA03Z501).
文摘The aryldiimine NCN-pincer stabilized neodymium dichloride combined with aluminum alkyls established a new type of homogeneous binary neutral Ziegler-Natta catalyst system.This system exhibited high activity and high cis-1,4 selectivity for the polymerization of isoprene (Tp=20 °C,98.2%;Tp=-20 °C,】 99%).Such catalytic performances remained under a broad range of polymerization temperatures and monomer-to-neodymium ratios (from 500 to 8000),reaching high number-average molecular weight (Mn=1582 kg/mol) and relatively narrow molecular weight distribution (PDI=1.68),which was,however,influenced by the amount and bulkiness of aluminum alkyls.Dynamic investigation of the polymerization was performed,which showed the number-average molecular weight of the resultant polyisoprene had an almost linear correlation with the conversion,suggesting,in some degree,the polymerization with this catalytic system was controllable.
文摘The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).
文摘China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis-1,4-polybutatine rubber and cis-1,4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.
基金financially supported by the National Basic Research Program of China(No.2010CB934700)
文摘The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, physio-mechanical and dynamic mechanical properties. Compared with NR, PI loaded with the same amount of WCB (PI/WCB) exhibited shorter scorch time and optimal cure time, indicating that WCB fillers are comparatively easier to conjugate with PI. The tensile strength and elongation at break decreased with WCB filling in both PI and NR vulcanizates. The hardness of the rubber vulcanizates increased with the WCB filling in the rubber matrix. PI/WCB blends exhibited smaller hardness data, lower tensile strength, as well as lower elongation at break and tensile stress. Increasing the amount of WCB in rubber matrix induced the Payne effect. However, the Payne effect is much more obvious for the PI/WCB system, and PI/WCB also displayed higher storage modulus whereas lower loss modulus and loss tangent than NR/WCB, which could all be attributed to the poor dispersibilities of WCB in the PI matrix.