In this paper, we study the algebraic properties of the higher analogues of Courant algebroid structures on the direct sum bundle TM ⊕∧nT*M for an m-dimensional manifold. As an application, we revisit Nambu-Poisson ...In this paper, we study the algebraic properties of the higher analogues of Courant algebroid structures on the direct sum bundle TM ⊕∧nT*M for an m-dimensional manifold. As an application, we revisit Nambu-Poisson structures and multisymplectic structures. We prove that the graph of an (n + 1)-vector field π is closed under the higher-order Dorfman bracket iff π is a Nambu-Poisson structure. Consequently, there is an induced Leibniz algebroid structure on ∧nT*M. The graph of an (n+1)-form ω is closed under the higher-order Dorfman bracket iff ω is a premultisymplectic structure of order n, i.e., dω = 0. Furthermore, there is a Lie algebroid structure on the admissible bundle A ∧nT*M. In particular, for a 2-plectic structure, it induces the Lie 2-algebra structure given in (Baez, Hoffnung and Rogers, 2010).展开更多
A constrained system associated with a 3 × 3 matrix spectral problem of the nonlinear Schroedinger(NLS) hierarchy is proposed. It is shown that the constrained system is a Hamiltonian system with the rigid body...A constrained system associated with a 3 × 3 matrix spectral problem of the nonlinear Schroedinger(NLS) hierarchy is proposed. It is shown that the constrained system is a Hamiltonian system with the rigid body type Poisson structure on the Poisson manifold R^3N. Further, the reduction of the constrained system extended to the common level set of the complex cones is proved to be the constrained AKNS system on C^2N.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 10871007)US-China CMR Noncommutative Geometry (Grant No. 10911120391/A0109)+1 种基金China Postdoctoral Science Foundation (Grant No. 20090451267)Science Research Foundation for Excellent Young Teachers of Mathematics School at Jilin University
文摘In this paper, we study the algebraic properties of the higher analogues of Courant algebroid structures on the direct sum bundle TM ⊕∧nT*M for an m-dimensional manifold. As an application, we revisit Nambu-Poisson structures and multisymplectic structures. We prove that the graph of an (n + 1)-vector field π is closed under the higher-order Dorfman bracket iff π is a Nambu-Poisson structure. Consequently, there is an induced Leibniz algebroid structure on ∧nT*M. The graph of an (n+1)-form ω is closed under the higher-order Dorfman bracket iff ω is a premultisymplectic structure of order n, i.e., dω = 0. Furthermore, there is a Lie algebroid structure on the admissible bundle A ∧nT*M. In particular, for a 2-plectic structure, it induces the Lie 2-algebra structure given in (Baez, Hoffnung and Rogers, 2010).
基金Foundation item: Supported by the National Natural Science Foundation of China(10471132)Supported by the Youth Teacher Foundation and Natural Science Foundation of Henan Education Department(2004110006)
文摘A constrained system associated with a 3 × 3 matrix spectral problem of the nonlinear Schroedinger(NLS) hierarchy is proposed. It is shown that the constrained system is a Hamiltonian system with the rigid body type Poisson structure on the Poisson manifold R^3N. Further, the reduction of the constrained system extended to the common level set of the complex cones is proved to be the constrained AKNS system on C^2N.