兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-Based Social Networks,LBSN)中的一项重要个性化服务.由于LBSN中数据的极度稀疏性,基于协同过滤的算法推荐精度不高,文中提出基于元路径的兴趣点推荐算法.首先根据LBS...兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-Based Social Networks,LBSN)中的一项重要个性化服务.由于LBSN中数据的极度稀疏性,基于协同过滤的算法推荐精度不高,文中提出基于元路径的兴趣点推荐算法.首先根据LBSN结构特征构建带权异构网络模型,其次引入元路径来描述节点间不同类型关联关系,基于三度影响力设置用户-兴趣点间元路径特征集,然后通过随机游走方法计算元路径特征值以度量实例路径中的首尾节点间关联度,并利用监督学习方法获得各特征的权值,最后计算特定用户将来在各兴趣点的签到概率从而生成推荐列表.文中在3个真实LBSN签到数据集上进行了实验,结果表明该算法可以有效缓解LBSN中的极度稀疏性问题,比传统推荐算法有更好的推荐效果.展开更多
中国城镇化和智慧城市建设的推进,对城市精细化规划与管理提出新挑战。明确城市空间结构划分,加强城市功能区的合理规划,对城镇化建设具有重要意义。基于遥感图像数据、POI(point of interest)数据及路网数据,使用遥感信息提取技术和语...中国城镇化和智慧城市建设的推进,对城市精细化规划与管理提出新挑战。明确城市空间结构划分,加强城市功能区的合理规划,对城镇化建设具有重要意义。基于遥感图像数据、POI(point of interest)数据及路网数据,使用遥感信息提取技术和语义信息挖掘方法,实现城市功能区的语义分类。对随机挑选的360处区块进行样本验证,结果显示城市功能语义分区的精度达到87.5%。该方法受区域限制较少,对城市功能分区研究有效。展开更多
文摘兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-Based Social Networks,LBSN)中的一项重要个性化服务.由于LBSN中数据的极度稀疏性,基于协同过滤的算法推荐精度不高,文中提出基于元路径的兴趣点推荐算法.首先根据LBSN结构特征构建带权异构网络模型,其次引入元路径来描述节点间不同类型关联关系,基于三度影响力设置用户-兴趣点间元路径特征集,然后通过随机游走方法计算元路径特征值以度量实例路径中的首尾节点间关联度,并利用监督学习方法获得各特征的权值,最后计算特定用户将来在各兴趣点的签到概率从而生成推荐列表.文中在3个真实LBSN签到数据集上进行了实验,结果表明该算法可以有效缓解LBSN中的极度稀疏性问题,比传统推荐算法有更好的推荐效果.
文摘中国城镇化和智慧城市建设的推进,对城市精细化规划与管理提出新挑战。明确城市空间结构划分,加强城市功能区的合理规划,对城镇化建设具有重要意义。基于遥感图像数据、POI(point of interest)数据及路网数据,使用遥感信息提取技术和语义信息挖掘方法,实现城市功能区的语义分类。对随机挑选的360处区块进行样本验证,结果显示城市功能语义分区的精度达到87.5%。该方法受区域限制较少,对城市功能分区研究有效。