With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to ...With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to mine their POIs.However,classical recommendation models,such as collaborative filtering,are not effective for structuring POI recommendations due to the sparseness of user check-ins.Furthermore,LBSN recommendations are distinct from other recommendation scenarios.With respect to user data,a user’s check-in record sequence requires rich social and geographic information.In this paper,we propose two different neural-network models,structural deep network Graph embedding Neural-network Recommendation system(SG-Neu Rec)and Deepwalk on Graph Neural-network Recommendation system(DG-Neu Rec)to improve POI recommendation.combined with embedding representation from social and geographical graph information(called SG-Neu Rec and DG-Neu Rec).Our model naturally combines the embedding representations of social and geographical graph information with user-POI interaction representation and captures the potential user-POI interactions under the framework of the neural network.Finally,we compare the performances of these two models and analyze the reasons for their differences.Results from comprehensive experiments on two real LBSNs datasets indicate the effective performance of our model.展开更多
随着基于位置的社交网络在日常生活中的广泛应用,有效提取用户的隐藏兴趣和行为序列模式并向用户提供满足其个性化需求的下一个兴趣点推荐服务成为推荐领域的热点问题之一.针对下一个兴趣点推荐中的用户偏好挖掘问题,提出基于用户兴趣...随着基于位置的社交网络在日常生活中的广泛应用,有效提取用户的隐藏兴趣和行为序列模式并向用户提供满足其个性化需求的下一个兴趣点推荐服务成为推荐领域的热点问题之一.针对下一个兴趣点推荐中的用户偏好挖掘问题,提出基于用户兴趣点类别周期性偏好和短期兴趣相结合的兴趣点推荐模型(Combining Periodic and Spatio-Temporal Intervals'Network,CPSTIN).该模型将用户的签到记录按小时时段模式嵌入时间窗口并使用多头自注意力机制提取用户结合用户兴趣点类别的周期性偏好;同时,将非连续时空间隔信息送入可学习矩阵,使用线性插值法提取用户基于高阶关联性的短期兴趣.最后,在两个真实数据集上验证了该模型的有效性,证明其能有效地利用用户高阶关联性短期兴趣和结合兴趣点类别的周期偏好,更准确地预测用户最有可能访问的下一个兴趣点.展开更多
文摘With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to mine their POIs.However,classical recommendation models,such as collaborative filtering,are not effective for structuring POI recommendations due to the sparseness of user check-ins.Furthermore,LBSN recommendations are distinct from other recommendation scenarios.With respect to user data,a user’s check-in record sequence requires rich social and geographic information.In this paper,we propose two different neural-network models,structural deep network Graph embedding Neural-network Recommendation system(SG-Neu Rec)and Deepwalk on Graph Neural-network Recommendation system(DG-Neu Rec)to improve POI recommendation.combined with embedding representation from social and geographical graph information(called SG-Neu Rec and DG-Neu Rec).Our model naturally combines the embedding representations of social and geographical graph information with user-POI interaction representation and captures the potential user-POI interactions under the framework of the neural network.Finally,we compare the performances of these two models and analyze the reasons for their differences.Results from comprehensive experiments on two real LBSNs datasets indicate the effective performance of our model.
文摘随着基于位置的社交网络在日常生活中的广泛应用,有效提取用户的隐藏兴趣和行为序列模式并向用户提供满足其个性化需求的下一个兴趣点推荐服务成为推荐领域的热点问题之一.针对下一个兴趣点推荐中的用户偏好挖掘问题,提出基于用户兴趣点类别周期性偏好和短期兴趣相结合的兴趣点推荐模型(Combining Periodic and Spatio-Temporal Intervals'Network,CPSTIN).该模型将用户的签到记录按小时时段模式嵌入时间窗口并使用多头自注意力机制提取用户结合用户兴趣点类别的周期性偏好;同时,将非连续时空间隔信息送入可学习矩阵,使用线性插值法提取用户基于高阶关联性的短期兴趣.最后,在两个真实数据集上验证了该模型的有效性,证明其能有效地利用用户高阶关联性短期兴趣和结合兴趣点类别的周期偏好,更准确地预测用户最有可能访问的下一个兴趣点.