期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
燃煤电厂烟气湿度控制对PM_(2.5)采样结果的影响
1
作者 韩东航 李振 +5 位作者 闫雨龙 彭林 李博韬 周永乾 师小龙 程宇栋 《环境工程》 CAS CSCD 北大核心 2023年第12期158-165,277,共9页
为研究脱硫后高湿烟气相对湿度的改变对颗粒物采样结果的影响,使用扩散干燥管对烟气进行除湿,并分析不同相对湿度下PM_(2.5)的粒径分布、传输损失和质量浓度变化。结果显示,模拟烟气湿度越高,PM_(2.5)粒数浓度和质量浓度也随之升高。40... 为研究脱硫后高湿烟气相对湿度的改变对颗粒物采样结果的影响,使用扩散干燥管对烟气进行除湿,并分析不同相对湿度下PM_(2.5)的粒径分布、传输损失和质量浓度变化。结果显示,模拟烟气湿度越高,PM_(2.5)粒数浓度和质量浓度也随之升高。40%相对湿度下,模拟烟气中ρ(PM_(2.5))为22.77 mg/m^(3),粒数浓度约为1.16×10^(6)个/cm^(3),模拟烟气湿度提升至50%、60%和80%时,ρ(PM_(2.5))分别升高1.06,4.35,4.69倍,粒数浓度分别升高1.31,1.70,1.76倍;使用扩散干燥管对模拟高湿烟气除湿,采集到的颗粒物质量浓度有不同程度的下降,最高相对湿度(94.9%)下,ρ(PM_(2.5))为27.17 mg/Nm^(3),湿度81.4%、68.5%、48.7%和30.4%时,质量浓度相比最高湿度时分别降低了14.5%、28.8%、43.0%和45.7%;烟气除湿可降低PM_(2.5)在管路内和切割头内的损失,在94.9%、81.4%和68.5%相对湿度下采集到的ρ(PM_(2.5))分别是对照组的3.02,2.73,2.57倍。高湿烟气除湿降低了颗粒物的含水率,使得PM_(2.5)的质量浓度测量结果随着除湿强度增加而降低,但因除湿降低了颗粒物损失,相比对照组最终采集到的PM_(2.5)质量浓度随着除湿强度增加而显著提升。 展开更多
关键词 燃煤电厂 烟气湿度 细颗粒物(pm_(2.5))采样 扩散干燥管 粒径分布 颗粒物损失
原文传递
Gravimetric analysis for PM_(2.5) mass concentration based on year-round monitoring at an urban site in Beijing 被引量:5
2
作者 Yanli Wang Wen Yang +3 位作者 Bin Han Wenjie Zhang Mindong Chen Zhipeng Bai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第2期154-160,共7页
Daily PM_(2.5)(particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences(CRAES), in the nor... Daily PM_(2.5)(particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences(CRAES), in the northern part of the Beijing urban area, from December 2013 to April 2015. Two pairs of Teflon(T1/T2) and Quartz(Q1/Q2) samples were obtained, for a total number of 1352 valid filters. Results showed elevated pollution in Beijing,with an annual mean PM_(2.5)mass concentration of 102 μg/m^3. According to the calculated PM_(2.5)mass concentration, 50% of our sampling days were acceptable(PM_(2.5)〈 75 μg/m^3), 30% had slight/medium pollution(75–150 μg/m^3), and 7% had severe pollution(〉 250 μg/m^3). Sampling interruption occurred frequently for the Teflon filter group(75%) in severe pollution periods,resulting in important data being missing. Further analysis showed that high PM_(2.5)combined with high relative humidity(RH) gave rise to the interruptions. The seasonal variation of PM_(2.5)was presented, with higher monthly average mass concentrations in winter(peak value in February, 422 μg/m^3), and lower in summer(7 μg/m^3 in June). From May to August, the typical summer period, least severe pollution events were observed, with high precipitation levels accelerating the process of wet deposition to remove PM_(2.5). The case of February presented the most serious pollution, with monthly averaged PM_(2.5)of 181 μg/m^3 and 32% of days with severe pollution. The abundance of PM_(2.5)in winter could be related to increased coal consumption for heating needs. 展开更多
关键词 pm_2.5 Gravimetric analysis sampling interruption Pollution level Relative humidity(RH) Seasonal variation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部