为研究深亚微米尺度下应变 Si Ge沟改进 PMOSFET器件性能的有效性 ,运用二维数值模拟程序MEDICI模拟和分析了 0 .1 8μm有效沟长 Si Ge PMOS及 Si PMOS器件特性。Si Ge PMOS垂直方向采用 Si/Si Ge/Si结构 ,横向结构同常规 PMOS,N+ -pol...为研究深亚微米尺度下应变 Si Ge沟改进 PMOSFET器件性能的有效性 ,运用二维数值模拟程序MEDICI模拟和分析了 0 .1 8μm有效沟长 Si Ge PMOS及 Si PMOS器件特性。Si Ge PMOS垂直方向采用 Si/Si Ge/Si结构 ,横向结构同常规 PMOS,N+ -poly栅结合 P型δ掺杂层获得了合理阈值电压及空穴局域化。研究表明 ,经适当设计的 Si Ge PMOS比对应 Si PMOS的 IDmax、gm、f T均提高 1 0 0 %以上 ,表明深亚微米尺度 Si展开更多
Based on theoretical analysis and computer-aided simulation, optimized design principles for Si/SiGe PMOSFET are given in this paper, which include choice of gate materials,determination of germanium percentage and pr...Based on theoretical analysis and computer-aided simulation, optimized design principles for Si/SiGe PMOSFET are given in this paper, which include choice of gate materials,determination of germanium percentage and profile in SiGe channel, optimization of thickness of dioxide and silicon cap layer, and adjustment of threshold voltage. In the light of these principles,a SiGe PMOSFET is designed and fabricated successfully. Measurement indicates that the SiGe PMOSFET's (L=2μm) transconductance is 45 mS/mm (300K) and 92mS/mm (77K), while that is 33 mS/mm (300K) and 39mS/mm (77K) in Si PMOSFET with the same structure.展开更多
A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemic...A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemical mechanical polishing,etching silicon and non-selective expitaxy.A PMOSFET with W/L = 50μm/8μm is also processed,and the measured results show that the drain-source current and peak mobility of the PMOSFET are enhanced by up to 50.7%and 150%at V_(gs) =-15 V and V_(ds) =-0.5 V,respectively.The mobility values are higher than that reported in the literature.展开更多
The effect of substrate doping on the flatband and threshold voltages of a strained-Si/SiGe p metal-oxide semiconductor field-effect transistor(pMOSFET) has been studied.By physically deriving the models of the flat...The effect of substrate doping on the flatband and threshold voltages of a strained-Si/SiGe p metal-oxide semiconductor field-effect transistor(pMOSFET) has been studied.By physically deriving the models of the flatband and threshold voltages,which have been validated by numerical simulation and experimental data,the shift in the plateau from the inversion region to the accumulation region as the substrate doping increases has been explained.The proposed model can provide a valuable reference to the designers of strained-Si devices and has been implemented in software for extracting the parameters of a strained-Si MOSFET.展开更多
文摘为研究深亚微米尺度下应变 Si Ge沟改进 PMOSFET器件性能的有效性 ,运用二维数值模拟程序MEDICI模拟和分析了 0 .1 8μm有效沟长 Si Ge PMOS及 Si PMOS器件特性。Si Ge PMOS垂直方向采用 Si/Si Ge/Si结构 ,横向结构同常规 PMOS,N+ -poly栅结合 P型δ掺杂层获得了合理阈值电压及空穴局域化。研究表明 ,经适当设计的 Si Ge PMOS比对应 Si PMOS的 IDmax、gm、f T均提高 1 0 0 %以上 ,表明深亚微米尺度 Si
基金Supported by National Key Laboratory Fund (99Js09 5.1)
文摘Based on theoretical analysis and computer-aided simulation, optimized design principles for Si/SiGe PMOSFET are given in this paper, which include choice of gate materials,determination of germanium percentage and profile in SiGe channel, optimization of thickness of dioxide and silicon cap layer, and adjustment of threshold voltage. In the light of these principles,a SiGe PMOSFET is designed and fabricated successfully. Measurement indicates that the SiGe PMOSFET's (L=2μm) transconductance is 45 mS/mm (300K) and 92mS/mm (77K), while that is 33 mS/mm (300K) and 39mS/mm (77K) in Si PMOSFET with the same structure.
基金supported by the National Basic Research Program of China(No.61398)
文摘A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemical mechanical polishing,etching silicon and non-selective expitaxy.A PMOSFET with W/L = 50μm/8μm is also processed,and the measured results show that the drain-source current and peak mobility of the PMOSFET are enhanced by up to 50.7%and 150%at V_(gs) =-15 V and V_(ds) =-0.5 V,respectively.The mobility values are higher than that reported in the literature.
文摘研究了最大栅电流应力 (即 p MOSFET最坏退化情况 )下 p MOSFET栅电流的退化特性 .实验发现 ,在最大栅电流应力下 ,p MOSFET栅电流随应力时间会发生很大下降 ,而且在应力初期和应力末期栅电流的下降规律均会偏离公认的指数规律 .给出了所有这些现象的详细物理解释 ,并在此基础上提出了一种新的用于 p
基金Project supported by the Funds from the National Ministries and Commissions (Grant Nos. 51308040203 and 6139801)the Fundamental Research Funds for the Central Universities (Grant Nos. 72105499 and 72104089)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2010JQ8008)
文摘The effect of substrate doping on the flatband and threshold voltages of a strained-Si/SiGe p metal-oxide semiconductor field-effect transistor(pMOSFET) has been studied.By physically deriving the models of the flatband and threshold voltages,which have been validated by numerical simulation and experimental data,the shift in the plateau from the inversion region to the accumulation region as the substrate doping increases has been explained.The proposed model can provide a valuable reference to the designers of strained-Si devices and has been implemented in software for extracting the parameters of a strained-Si MOSFET.