为了解决W波段接收机保护开关和发射机调制开关芯片问题,基于0.1 mm厚2英寸熔制石英薄膜电路工艺,研制出了应用于W波段PIN二极管单刀单掷开关。为了考察开关性能的一致性,随机抽取了3个SPST开关作了测试,测试结果为,在76-85 GHz频率范围...为了解决W波段接收机保护开关和发射机调制开关芯片问题,基于0.1 mm厚2英寸熔制石英薄膜电路工艺,研制出了应用于W波段PIN二极管单刀单掷开关。为了考察开关性能的一致性,随机抽取了3个SPST开关作了测试,测试结果为,在76-85 GHz频率范围内,开关插损小于1.3 d B,不一致性小于0.5 d B;开关隔离度大于20 d B;开关响应时间、导通时间、关断时间小于20 ns;开关尺寸3.2 mm×3.2 mm。结果表明,该开关可作为接收保护开关和发射调制开关应用于W波段收发组件中。展开更多
抑制电磁干扰是解决光纤陀螺尤其是轻小型光纤陀螺低速灵敏度的关键问题,为了从电源完整性角度研究光纤陀螺检测电路干扰传导特性,需要对光电探测组件的电源抑制比进行测试。针对光纤陀螺微弱信号检测的特点,提出一种基于锁相放大器的...抑制电磁干扰是解决光纤陀螺尤其是轻小型光纤陀螺低速灵敏度的关键问题,为了从电源完整性角度研究光纤陀螺检测电路干扰传导特性,需要对光电探测组件的电源抑制比进行测试。针对光纤陀螺微弱信号检测的特点,提出一种基于锁相放大器的光电探测组件电源抑制比测试方案,通过测量普通运算放大器的电源抑制比并与手册给定的典型值进行对比,校验了测试系统的准确性。以中低精度光纤陀螺调制-解调频率范围为例,利用该测试系统测量了光电探测组件100 k Hz^3 MHz内电源抑制比频率特性曲线。实验结果表明,光电探测组件的电源抑制比呈明显的高通特性,在100 k Hz频率点处+PSRR约为29.5 d B,到达3 MHz处衰减为17.8 d B,为后续计算电源传导干扰抑制要求和优化电源退耦网络提供了依据。展开更多
文摘为了解决W波段接收机保护开关和发射机调制开关芯片问题,基于0.1 mm厚2英寸熔制石英薄膜电路工艺,研制出了应用于W波段PIN二极管单刀单掷开关。为了考察开关性能的一致性,随机抽取了3个SPST开关作了测试,测试结果为,在76-85 GHz频率范围内,开关插损小于1.3 d B,不一致性小于0.5 d B;开关隔离度大于20 d B;开关响应时间、导通时间、关断时间小于20 ns;开关尺寸3.2 mm×3.2 mm。结果表明,该开关可作为接收保护开关和发射调制开关应用于W波段收发组件中。
文摘抑制电磁干扰是解决光纤陀螺尤其是轻小型光纤陀螺低速灵敏度的关键问题,为了从电源完整性角度研究光纤陀螺检测电路干扰传导特性,需要对光电探测组件的电源抑制比进行测试。针对光纤陀螺微弱信号检测的特点,提出一种基于锁相放大器的光电探测组件电源抑制比测试方案,通过测量普通运算放大器的电源抑制比并与手册给定的典型值进行对比,校验了测试系统的准确性。以中低精度光纤陀螺调制-解调频率范围为例,利用该测试系统测量了光电探测组件100 k Hz^3 MHz内电源抑制比频率特性曲线。实验结果表明,光电探测组件的电源抑制比呈明显的高通特性,在100 k Hz频率点处+PSRR约为29.5 d B,到达3 MHz处衰减为17.8 d B,为后续计算电源传导干扰抑制要求和优化电源退耦网络提供了依据。