Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix...Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6-10 times longer than that for TMCs.展开更多
In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com...In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing展开更多
<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as r...<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as reinforcement. The hybrid metal matrix composites</span><span style="font-family:Verdana;"> (Hmmcs) have been used to manufacture drive shafts, disc brake rotors, brake drums, connecting rods pistons, engine block cylinder liners for automotive and rail vehicle applications. The Hmmcs castings of diameter 120 mm and length 300 mm were prepared through sand mould technique following stir casting methodology. The cast components further subjected to evaluation of physical properties and machining tests using two grades of coated inserts and PCD inserts. The experiments were carried out following ISO 3685 standards. The coating thickness of the TiN coated and TiAlN coated inserts were measured using Kalo testing method</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the results of the test show that the interface of the substrate and coating was free from the porosity, and the coating thickness of TiN coating was 4.84 microns and TiAlN coating was measured 4.6 microns. The results of the experiments show that performance of the PCD insert was better than coated inserts at 0.1 mm/rev feed</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> however at 0.2 mm/revolution feed PCD insert failed by micro chipping of cutting edge while machining Hmmcs. When TiAlN coated inserts were us展开更多
基金supported by the National Natural Science Foundation of China (No.51275227)Nanjing Science and Technology Development Plan (201306024) of Chinathe Qinglan Project of Jiangsu Province (2014) of China
文摘Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6-10 times longer than that for TMCs.
文摘In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing
文摘<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as reinforcement. The hybrid metal matrix composites</span><span style="font-family:Verdana;"> (Hmmcs) have been used to manufacture drive shafts, disc brake rotors, brake drums, connecting rods pistons, engine block cylinder liners for automotive and rail vehicle applications. The Hmmcs castings of diameter 120 mm and length 300 mm were prepared through sand mould technique following stir casting methodology. The cast components further subjected to evaluation of physical properties and machining tests using two grades of coated inserts and PCD inserts. The experiments were carried out following ISO 3685 standards. The coating thickness of the TiN coated and TiAlN coated inserts were measured using Kalo testing method</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the results of the test show that the interface of the substrate and coating was free from the porosity, and the coating thickness of TiN coating was 4.84 microns and TiAlN coating was measured 4.6 microns. The results of the experiments show that performance of the PCD insert was better than coated inserts at 0.1 mm/rev feed</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> however at 0.2 mm/revolution feed PCD insert failed by micro chipping of cutting edge while machining Hmmcs. When TiAlN coated inserts were us