期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PCA-Fisher判别分析模型的煤与瓦斯突出危险等级预测方法研究
被引量:
9
1
作者
陈建平
董军
吕相伟
《矿业安全与环保》
北大核心
2018年第3期61-66,71,共7页
为了提高煤与瓦斯突出预测精度,选取瓦斯含量、瓦斯压力、瓦斯放散初速度等11个因素作为判别指标,将煤与瓦斯突出强度分为无突出、小型突出、中型突出、大型突出4个等级。利用贵州黔西北煤矿资料中的28组数据作为训练学习样本,建立了煤...
为了提高煤与瓦斯突出预测精度,选取瓦斯含量、瓦斯压力、瓦斯放散初速度等11个因素作为判别指标,将煤与瓦斯突出强度分为无突出、小型突出、中型突出、大型突出4个等级。利用贵州黔西北煤矿资料中的28组数据作为训练学习样本,建立了煤与瓦斯突出危险等级预测的PCA-Fisher判别分析模型,再利用资料中其余6组数据作为预测样本,对该模型进行检验和应用,并与BP神经网络模型和Fisher判别模型的判别结果进行比较。结果表明:PCA-Fisher判别模型具有更高的准确性和可靠性,可以对煤与瓦斯突出危险等级进行有效预测。
展开更多
关键词
瓦斯含量
瓦斯压力
煤与瓦斯突出
pca
-
fisher
判别分析
BP神经网络
危险等级预测
下载PDF
职称材料
题名
基于PCA-Fisher判别分析模型的煤与瓦斯突出危险等级预测方法研究
被引量:
9
1
作者
陈建平
董军
吕相伟
机构
辽宁工程技术大学矿业学院
出处
《矿业安全与环保》
北大核心
2018年第3期61-66,71,共7页
文摘
为了提高煤与瓦斯突出预测精度,选取瓦斯含量、瓦斯压力、瓦斯放散初速度等11个因素作为判别指标,将煤与瓦斯突出强度分为无突出、小型突出、中型突出、大型突出4个等级。利用贵州黔西北煤矿资料中的28组数据作为训练学习样本,建立了煤与瓦斯突出危险等级预测的PCA-Fisher判别分析模型,再利用资料中其余6组数据作为预测样本,对该模型进行检验和应用,并与BP神经网络模型和Fisher判别模型的判别结果进行比较。结果表明:PCA-Fisher判别模型具有更高的准确性和可靠性,可以对煤与瓦斯突出危险等级进行有效预测。
关键词
瓦斯含量
瓦斯压力
煤与瓦斯突出
pca
-
fisher
判别分析
BP神经网络
危险等级预测
Keywords
gas content
gas pressure
coal and gas outburst
pca
-
fisher
discriminant analysis
BP neural network
risk level prediction
分类号
TD713.2 [矿业工程—矿井通风与安全]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PCA-Fisher判别分析模型的煤与瓦斯突出危险等级预测方法研究
陈建平
董军
吕相伟
《矿业安全与环保》
北大核心
2018
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部