The Tertiary deposits of the Yongdeng section, the Lanzhou Basin were studied by means of magnetostrati-graphy. The magnetostratigraphic sequences from Paleocene to Miocene were established, and the time scale for the...The Tertiary deposits of the Yongdeng section, the Lanzhou Basin were studied by means of magnetostrati-graphy. The magnetostratigraphic sequences from Paleocene to Miocene were established, and the time scale for the corresponding stratigraphy and mammalian faunas was also established by referring to their correlation to the GPTS of BKSA95 (The geomagnetic polarity time scale which was thoroughly revised and updated by Berggreen et al. in 1995). In the end the paleoenvironmental records and their relationship with the uplifting of the Tibetan Plateau were discussed. The results are as follows. The top boundary of the Xiliugou Formation is dated to be 51 Ma, i.e. Eocene. TheYehucheng Formation covers the time span of 51-31.5 Ma, i.e. from late Early Eocene to early Early Oligocene. The Xianshuihe Formation covers the time span of 31.5-15 Ma, i.e. from Early Oligocene to Middle Miocene. The lower member of the Xianshuihe Formation spans from 31.5 to 20.0 Ma, i.e. from Early Oligocene to early Early展开更多
Paleomagnetic study of China and its constraints on Asia tectonics has been a hot spot. Some new paleomagnetic data from three major blocks of China, North China Block (NCB), Yangtze Block (YZB) and Tarim Block (...Paleomagnetic study of China and its constraints on Asia tectonics has been a hot spot. Some new paleomagnetic data from three major blocks of China, North China Block (NCB), Yangtze Block (YZB) and Tarim Block (TRM) are first reported, and then available published Phanerozoic paleomagnetic poles from these blocks with the goal of placing constraints on the drift history and paleocontinental reconstruction are critically reviewed. It was found that all three major blocks were located at the mid low latitude in the Southern Hemisphere during the Early Paleozoic. The NCB was probably independent in terms of dynamics, its drift history was dominant by latitudinal placement accompanying rotation in the Early Paleozoic. The YZB was close to Gondwanaland in Cambrian, and separated from Gondwanaland during the Late Middle Ordovician. The TRM was part of Gondwanaland, and might be close to the YZB and Australia in the Early Paleozoic. Paleomagnetic data show that the TRM was separated from Gondwanaland during the Late Middle Ordovician, and then drifted northward. The TRM was sutured to Siberia and Kazakstan blocks during the Permian, however, the composite Mongolia NCB block did not collide with Siberia till Late Jurassic. During Late Permian to Late Triassic, the NCB and YZB were characterized by northern latitudinal placement and rotation on the pivot in the Dabie area. The NCB and YZB collided first in the eastern part where they were located at northern latitude of about 6°\8°, and a triangular oceanic basin remained in the Late Permian. The suturing zone was located at northern latitude of 25° where the two blocks collided at the western part in the Late Triassic. The collision between the two blocks propagated westward after the YZB rotated about 70° relative to the NCB during the Late Permian to Middle Jurassic. Then two blocks were northward drifting (about 5°) together with relative rotating and crust shortening. It was such scissors like collision procedure that produced intensive compress展开更多
对分布于华北板块东缘的辽宁铁岭、瓦房店及山东蒙阴等3个金伯利岩区的地质构造特征进行了研究,利用地层时代、构造行迹、古地磁以及同位素资料,对该区域金伯利岩的侵位时间进行了综合约束,认为该区域金伯利岩的侵位时间应该在250-30...对分布于华北板块东缘的辽宁铁岭、瓦房店及山东蒙阴等3个金伯利岩区的地质构造特征进行了研究,利用地层时代、构造行迹、古地磁以及同位素资料,对该区域金伯利岩的侵位时间进行了综合约束,认为该区域金伯利岩的侵位时间应该在250-300 Ma 之间。在此基础上,结合华北板块与扬子板块在古生代时的相互运移特征,对华北板块东缘金刚石的成矿区域地质背景进行了分析,并结合构造形迹的研究,对该区域金刚石原生矿进行了成矿预测。展开更多
The results on the Early Paleozoic from the North China Block (NCB) are reported, and a series of reliable poles are selected from the available Phanerozoic data, based on the conventional reliability criteria, e.g. t...The results on the Early Paleozoic from the North China Block (NCB) are reported, and a series of reliable poles are selected from the available Phanerozoic data, based on the conventional reliability criteria, e.g. the number of samples, the uncertainty limit, any suspected incomplete demagnetization or overprint and field test (including fold, reversal, conglomerate tests). Especially, paleopole data is excluded if the sampling area suffered from the tectonic (e.g. rotation) and thermal effects. A new Phanerozoic apparent polar wander (APW) path for the NCB is compiled, and its tectonic evolution is discussed.展开更多
The Tunggurian Age was nominated in 1984, and the Second National Commission on Stratigraphy of China formally suggested establishing the corresponding chronostratigraphic unit, the Tunggurian Stage, based on the Tung...The Tunggurian Age was nominated in 1984, and the Second National Commission on Stratigraphy of China formally suggested establishing the corresponding chronostratigraphic unit, the Tunggurian Stage, based on the Tunggurian Age in 1999. The name of this stage comes from a lithostratigraphic unit, the Tunggur Formation, and the stratotype section is located at the Tunggur tableland, 15 km southeast of Saihan Gobi Township, Sonid Left Banner, Inner Mongolia. The Tunggurian Age is correlated to the Astaracian of the European land mammal ages, and they share the same definition of the lower boundary at the base of the paleomagnetic Chron C5Bn.1r with an age of 15.0 Ma. In the Tairum Nor section on the southeastern edge of the Tunggur tableland, this boundary is situated within the successive deposits of reddish-brown massive mudstone of the lower part of the Tunggur Formation, with a distance of 7.6 m from the base of the grayish-white sandstones in the middle part of the section. The Tunggurian is approximately correlated to the upper part of the marine Langhian and the marine Serravallian in the International Stratigraphical Chart. The Tunggurian Stage includes two Neogene mammal faunal units, i.e. NMU 6 (MN 6) and NMU 7 (MN 7/8). The Tairnm Nor fauna from the Talrnm Nor section corresponds to NMU 6, and the Tunggur fauna (senso stricto) from the localities on the northwestern edge of the Tunggur tableland, such as Platybelodon Quarry, Wolf Camp and Moergen, corresponds to NMU 7. Among the Middle Miocene mammalian faunas in China, the Laogou fauna from the Linxia Basin, Gansu, the Quantougou fauna from the Lanzhou Basin, Gansu, the Halamagai fauna from the northern Junggar Basin, Xinjiang, and the Dingjiaergou fauna from Tongxin, Ningxia correspond to NMU 6.展开更多
The characteristics of Late Cenozoic tectonic uplift of the southern margin of the Qinghai- Tibet Plateau may be inferred from fluvio-lacustrine strata in the Zanda basin, Ngari, Tibet. Magnetostratigraphic study show...The characteristics of Late Cenozoic tectonic uplift of the southern margin of the Qinghai- Tibet Plateau may be inferred from fluvio-lacustrine strata in the Zanda basin, Ngari, Tibet. Magnetostratigraphic study shows that the very thick fluvio-lacustrine strata in the basin are 5.89- 0.78 Ma old and that their deposition persisted for 5.11 Ma, i.e. starting at the end of the Miocene and ending at the end of the early Pleistocene, with the Quaternary glacial stage starting in the area no later than 1.58 Ma. Analysis of the sedimentary environment indicates that the Zanda basin on the southern Qinghai-Tibet Plateau began uplift at -5.89 Ma, later than the northern Qinghai-Tibet Plateau. Presence of gravel beds in the Guge and Qangze Formations reflects that strong uplift took place at -5.15 and -2.71 Ma, with the uplift peaking at -2.71 Ma.展开更多
Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m secti...Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are>11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.展开更多
Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, C...Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, China. Data revealed that magnetic minerals in limestone samples from the Zarigen Formation (CP^z)are primarily composed of magnetite, while those in sandstone samples from the Nuoribagaribao Formation (Pnr) are dominated by hematite alone, or hematite and magnetite in combination. Progressive thermal, or alternating field, demagnetization allowed us to isolate a stable high temperature component (HTC) in 127 specimens from 16 sites which successfully passed the conglomerate test, consistent with primary remnance. The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D°=30.2°, Is=-40.9°, ks=269.0, a95=2.3°, N=16, which yields a corresponding paleomagnetic pole at 25.7°N, 241.5°E (alp/rim=2.8°/1.7°), and a paleolatitude of 23.4°S. Our results, together with previously reported paleomagnetic data, indicate that: (1) the NQT in Tibet, China, was located at a low latitude in the southern hemisphere, and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian; (2) the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian, and (3) the NQT subsequently moved rapidly northwards, perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean, the northern branch of the Neo-Tethys Ocean, expanded rapidly during this time.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 49472083, 49572133 and 49972004) and the Institute Fund of ETH, Switzerland.
文摘The Tertiary deposits of the Yongdeng section, the Lanzhou Basin were studied by means of magnetostrati-graphy. The magnetostratigraphic sequences from Paleocene to Miocene were established, and the time scale for the corresponding stratigraphy and mammalian faunas was also established by referring to their correlation to the GPTS of BKSA95 (The geomagnetic polarity time scale which was thoroughly revised and updated by Berggreen et al. in 1995). In the end the paleoenvironmental records and their relationship with the uplifting of the Tibetan Plateau were discussed. The results are as follows. The top boundary of the Xiliugou Formation is dated to be 51 Ma, i.e. Eocene. TheYehucheng Formation covers the time span of 51-31.5 Ma, i.e. from late Early Eocene to early Early Oligocene. The Xianshuihe Formation covers the time span of 31.5-15 Ma, i.e. from Early Oligocene to Middle Miocene. The lower member of the Xianshuihe Formation spans from 31.5 to 20.0 Ma, i.e. from Early Oligocene to early Early
文摘Paleomagnetic study of China and its constraints on Asia tectonics has been a hot spot. Some new paleomagnetic data from three major blocks of China, North China Block (NCB), Yangtze Block (YZB) and Tarim Block (TRM) are first reported, and then available published Phanerozoic paleomagnetic poles from these blocks with the goal of placing constraints on the drift history and paleocontinental reconstruction are critically reviewed. It was found that all three major blocks were located at the mid low latitude in the Southern Hemisphere during the Early Paleozoic. The NCB was probably independent in terms of dynamics, its drift history was dominant by latitudinal placement accompanying rotation in the Early Paleozoic. The YZB was close to Gondwanaland in Cambrian, and separated from Gondwanaland during the Late Middle Ordovician. The TRM was part of Gondwanaland, and might be close to the YZB and Australia in the Early Paleozoic. Paleomagnetic data show that the TRM was separated from Gondwanaland during the Late Middle Ordovician, and then drifted northward. The TRM was sutured to Siberia and Kazakstan blocks during the Permian, however, the composite Mongolia NCB block did not collide with Siberia till Late Jurassic. During Late Permian to Late Triassic, the NCB and YZB were characterized by northern latitudinal placement and rotation on the pivot in the Dabie area. The NCB and YZB collided first in the eastern part where they were located at northern latitude of about 6°\8°, and a triangular oceanic basin remained in the Late Permian. The suturing zone was located at northern latitude of 25° where the two blocks collided at the western part in the Late Triassic. The collision between the two blocks propagated westward after the YZB rotated about 70° relative to the NCB during the Late Permian to Middle Jurassic. Then two blocks were northward drifting (about 5°) together with relative rotating and crust shortening. It was such scissors like collision procedure that produced intensive compress
文摘对分布于华北板块东缘的辽宁铁岭、瓦房店及山东蒙阴等3个金伯利岩区的地质构造特征进行了研究,利用地层时代、构造行迹、古地磁以及同位素资料,对该区域金伯利岩的侵位时间进行了综合约束,认为该区域金伯利岩的侵位时间应该在250-300 Ma 之间。在此基础上,结合华北板块与扬子板块在古生代时的相互运移特征,对华北板块东缘金刚石的成矿区域地质背景进行了分析,并结合构造形迹的研究,对该区域金刚石原生矿进行了成矿预测。
文摘The results on the Early Paleozoic from the North China Block (NCB) are reported, and a series of reliable poles are selected from the available Phanerozoic data, based on the conventional reliability criteria, e.g. the number of samples, the uncertainty limit, any suspected incomplete demagnetization or overprint and field test (including fold, reversal, conglomerate tests). Especially, paleopole data is excluded if the sampling area suffered from the tectonic (e.g. rotation) and thermal effects. A new Phanerozoic apparent polar wander (APW) path for the NCB is compiled, and its tectonic evolution is discussed.
基金This work is supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2- YW-120)the National Commission on Stratigraphy of China+1 种基金the Ministry of Science and Technology of China (2006FY120300, 2006CB806400)the National Natural Science Foundation of China (40232023).
文摘The Tunggurian Age was nominated in 1984, and the Second National Commission on Stratigraphy of China formally suggested establishing the corresponding chronostratigraphic unit, the Tunggurian Stage, based on the Tunggurian Age in 1999. The name of this stage comes from a lithostratigraphic unit, the Tunggur Formation, and the stratotype section is located at the Tunggur tableland, 15 km southeast of Saihan Gobi Township, Sonid Left Banner, Inner Mongolia. The Tunggurian Age is correlated to the Astaracian of the European land mammal ages, and they share the same definition of the lower boundary at the base of the paleomagnetic Chron C5Bn.1r with an age of 15.0 Ma. In the Tairum Nor section on the southeastern edge of the Tunggur tableland, this boundary is situated within the successive deposits of reddish-brown massive mudstone of the lower part of the Tunggur Formation, with a distance of 7.6 m from the base of the grayish-white sandstones in the middle part of the section. The Tunggurian is approximately correlated to the upper part of the marine Langhian and the marine Serravallian in the International Stratigraphical Chart. The Tunggurian Stage includes two Neogene mammal faunal units, i.e. NMU 6 (MN 6) and NMU 7 (MN 7/8). The Tairnm Nor fauna from the Talrnm Nor section corresponds to NMU 6, and the Tunggur fauna (senso stricto) from the localities on the northwestern edge of the Tunggur tableland, such as Platybelodon Quarry, Wolf Camp and Moergen, corresponds to NMU 7. Among the Middle Miocene mammalian faunas in China, the Laogou fauna from the Linxia Basin, Gansu, the Quantougou fauna from the Lanzhou Basin, Gansu, the Halamagai fauna from the northern Junggar Basin, Xinjiang, and the Dingjiaergou fauna from Tongxin, Ningxia correspond to NMU 6.
基金This study was supported jointly by the National Natural Science Foundation grant 40572134 the Land and Resources Survey project "Environmental Evolution Sequence of Tertiary Major Paleolakes on the Qinghai- Tibet Plateau" (Ke[2003]007-02).
文摘The characteristics of Late Cenozoic tectonic uplift of the southern margin of the Qinghai- Tibet Plateau may be inferred from fluvio-lacustrine strata in the Zanda basin, Ngari, Tibet. Magnetostratigraphic study shows that the very thick fluvio-lacustrine strata in the basin are 5.89- 0.78 Ma old and that their deposition persisted for 5.11 Ma, i.e. starting at the end of the Miocene and ending at the end of the early Pleistocene, with the Quaternary glacial stage starting in the area no later than 1.58 Ma. Analysis of the sedimentary environment indicates that the Zanda basin on the southern Qinghai-Tibet Plateau began uplift at -5.89 Ma, later than the northern Qinghai-Tibet Plateau. Presence of gravel beds in the Guge and Qangze Formations reflects that strong uplift took place at -5.15 and -2.71 Ma, with the uplift peaking at -2.71 Ma.
基金the National Key Basic Research Development Project (Grant No. G1998040809).
文摘Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are>11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.
基金supported by the National Natural Science Foundation of China(Grant Nos.41304049 and 41421002)the Special Fund for Strategic Pilot Technology of the Chinese Academy of Sciences(Grant No. XDB03010000)
文摘Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, China. Data revealed that magnetic minerals in limestone samples from the Zarigen Formation (CP^z)are primarily composed of magnetite, while those in sandstone samples from the Nuoribagaribao Formation (Pnr) are dominated by hematite alone, or hematite and magnetite in combination. Progressive thermal, or alternating field, demagnetization allowed us to isolate a stable high temperature component (HTC) in 127 specimens from 16 sites which successfully passed the conglomerate test, consistent with primary remnance. The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D°=30.2°, Is=-40.9°, ks=269.0, a95=2.3°, N=16, which yields a corresponding paleomagnetic pole at 25.7°N, 241.5°E (alp/rim=2.8°/1.7°), and a paleolatitude of 23.4°S. Our results, together with previously reported paleomagnetic data, indicate that: (1) the NQT in Tibet, China, was located at a low latitude in the southern hemisphere, and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian; (2) the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian, and (3) the NQT subsequently moved rapidly northwards, perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean, the northern branch of the Neo-Tethys Ocean, expanded rapidly during this time.