提出了采用基于Pair-Copula分解的藤Copula理论建立多元风速相依模型的方法。该方法首先考虑了风速分布的随机性,并计及风电场内部风机群风速间的相关性,采用Canonical藤描述Pair-Copula分解的逻辑结构,通过求解Canonical藤结构中的Pair...提出了采用基于Pair-Copula分解的藤Copula理论建立多元风速相依模型的方法。该方法首先考虑了风速分布的随机性,并计及风电场内部风机群风速间的相关性,采用Canonical藤描述Pair-Copula分解的逻辑结构,通过求解Canonical藤结构中的Pair-Copula概率密度函数PDF(probabilitydensity function),得到高维联合分布下的Pair-Copula多元风速相依模型;再对某实际风电场进行实证分析,得到了风电场内部6个风机群间风速的Pair-Copula联合概率密度函数JPDF(joint probability density function);最后在风电场风速相关结构的问题上进一步研究分析,为下一步建立混合Copula函数模型提供思路。展开更多
The uncertainty of wind power forecasting significantly influences power systems with high percentage of wind power generation. Despite the wind power forecasting error causation, the temporal and spatial dependence o...The uncertainty of wind power forecasting significantly influences power systems with high percentage of wind power generation. Despite the wind power forecasting error causation, the temporal and spatial dependence of prediction errors has done great influence in specific applications, such as multistage scheduling and aggregated wind power integration. In this paper, Pair-Copula theory has been introduced to construct a multivariate model which can fully considers the margin distribution and stochastic dependence characteristics of wind power forecasting errors. The characteristics of temporal and spatial dependence have been modelled, and their influences on wind power integrations have been analyzed.Model comparisons indicate that the proposed model can reveal the essential relationships of wind power forecasting uncertainty, and describe the various dependences more accurately.展开更多
文摘提出了采用基于Pair-Copula分解的藤Copula理论建立多元风速相依模型的方法。该方法首先考虑了风速分布的随机性,并计及风电场内部风机群风速间的相关性,采用Canonical藤描述Pair-Copula分解的逻辑结构,通过求解Canonical藤结构中的Pair-Copula概率密度函数PDF(probabilitydensity function),得到高维联合分布下的Pair-Copula多元风速相依模型;再对某实际风电场进行实证分析,得到了风电场内部6个风机群间风速的Pair-Copula联合概率密度函数JPDF(joint probability density function);最后在风电场风速相关结构的问题上进一步研究分析,为下一步建立混合Copula函数模型提供思路。
基金supported by China’s National High Technology Research and Development Program(No.2012AA050207)China’s National Nature Science Foundation(No.51190101)Science and Technology Projects of the State Grid Corporation of China(No.SGHN0000DKJS130022)
文摘The uncertainty of wind power forecasting significantly influences power systems with high percentage of wind power generation. Despite the wind power forecasting error causation, the temporal and spatial dependence of prediction errors has done great influence in specific applications, such as multistage scheduling and aggregated wind power integration. In this paper, Pair-Copula theory has been introduced to construct a multivariate model which can fully considers the margin distribution and stochastic dependence characteristics of wind power forecasting errors. The characteristics of temporal and spatial dependence have been modelled, and their influences on wind power integrations have been analyzed.Model comparisons indicate that the proposed model can reveal the essential relationships of wind power forecasting uncertainty, and describe the various dependences more accurately.