The Mn-Ce-Nb-O_x/P84 catalytic filter for removal of particulates and NO simultaneous was prepared by a novel method(foam coating method). The process parameters including the concentrations of PTFE emulsion, particle...The Mn-Ce-Nb-O_x/P84 catalytic filter for removal of particulates and NO simultaneous was prepared by a novel method(foam coating method). The process parameters including the concentrations of PTFE emulsion, particle size of catalyst and calcination temperature for preparation of catalytic filters were analyzed. In addition, the physical properties and performance for removal of NO(NH_3-SCR) and particulates of Mn-Ce-Nb-O_x/P84 catalytic filter prepared under the optimized parameters, were also systematic studied. Results show that the process parameters had significant influences on stability and performance of catalytic filter, The Mn-Ce-Nb-O_x/P84 catalytic filter prepared by foam coating method under the optimized parameters, has satisfactory physical properties and catalytic performance for removal of NO and particulates at 140-220 ℃. The NO removal efficiency of catalytic filter can reach95.3% at 200 ℃ as the catalyst loading amount is 450 g/m^2, Moreover,the dust removal efficiency of MnGe-Nb-O_x/P84 catalytic filter reaches as high as 99.98%, and the PM2.5 removal efficiency also reaches99.98%. The anti-sulfur performance of Mn-Ce-Nb-O_x catalytic filter is also attractive, after injecting150 ppm SO_2, the NO removal efficiency still retains up to 85%. It is indicated that the foam coating method can not only make a bond of high strength between catalyst and filter, but also make the catalytic filter possessing an excellent and stable performance for removal of NO and particulates.展开更多
基金Project supported by the National Natural Science Foundation of China(21501097,21272118,21577065)the Natural Science Foundation of Jiangsu Province(BK20170954)+2 种基金the Startup Foundation for Introducing Talent of NUIST(2017r073)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China,China(18KJB430019)University Science Research Project of Jiangsu Province(18KJB430019)
文摘The Mn-Ce-Nb-O_x/P84 catalytic filter for removal of particulates and NO simultaneous was prepared by a novel method(foam coating method). The process parameters including the concentrations of PTFE emulsion, particle size of catalyst and calcination temperature for preparation of catalytic filters were analyzed. In addition, the physical properties and performance for removal of NO(NH_3-SCR) and particulates of Mn-Ce-Nb-O_x/P84 catalytic filter prepared under the optimized parameters, were also systematic studied. Results show that the process parameters had significant influences on stability and performance of catalytic filter, The Mn-Ce-Nb-O_x/P84 catalytic filter prepared by foam coating method under the optimized parameters, has satisfactory physical properties and catalytic performance for removal of NO and particulates at 140-220 ℃. The NO removal efficiency of catalytic filter can reach95.3% at 200 ℃ as the catalyst loading amount is 450 g/m^2, Moreover,the dust removal efficiency of MnGe-Nb-O_x/P84 catalytic filter reaches as high as 99.98%, and the PM2.5 removal efficiency also reaches99.98%. The anti-sulfur performance of Mn-Ce-Nb-O_x catalytic filter is also attractive, after injecting150 ppm SO_2, the NO removal efficiency still retains up to 85%. It is indicated that the foam coating method can not only make a bond of high strength between catalyst and filter, but also make the catalytic filter possessing an excellent and stable performance for removal of NO and particulates.