Lithium–sulfur(Li–S)batteries have attracted much attention due to their ultrahigh theoretical specific capacity.However,serious capacity attenuation caused by shuttle effect still inhibits the performance improveme...Lithium–sulfur(Li–S)batteries have attracted much attention due to their ultrahigh theoretical specific capacity.However,serious capacity attenuation caused by shuttle effect still inhibits the performance improvement.Herein,a modified separator consists of the few-layer graphene as a highly conductive network and stable scaffold to support P-doped boron nitride(denoted as BN-P@GO)as the functional interlayer of Li–S batteries.The cell with the interlayer provides an initial discharge capacity as high as1045.3 mAh g^-1,and retains a high reversible capacity of 728.7 mAh g^-1 at 1 C after 500 cycles with a capacity decay of 0.061%per cycle.Moreover,the rate capability is also superior to cells with BN@GO or BN-P interlayers,i.e.reversible capcity of 457.9 mAh g^-1 even at 3 C.The excellent electrochemical performance is ascribed to the synergistic effect of physical barrier and chemical adsorption for dissolved polysulfides provided by the modified layer.Furhtermore,it also mitigates the polarization and promotes kinetic reactions of the cells.This work provides a concise and effective method for commercialization of lithium–sulfur batteries.展开更多
基金the financial supports provided by the National Natural Science Foundation of China(21871164)Young Scholars Program of Shandong University(No.2017WLJH15)+2 种基金the China Postdoctoral Science Foundation(Nos.2017M610419 and 2018T110680)the Special Fund for Postdoctoral Innovation Program of Shandong Province(No.201701003)the Taishan Scholar Project of Shandong Province(No.ts201511004)
文摘Lithium–sulfur(Li–S)batteries have attracted much attention due to their ultrahigh theoretical specific capacity.However,serious capacity attenuation caused by shuttle effect still inhibits the performance improvement.Herein,a modified separator consists of the few-layer graphene as a highly conductive network and stable scaffold to support P-doped boron nitride(denoted as BN-P@GO)as the functional interlayer of Li–S batteries.The cell with the interlayer provides an initial discharge capacity as high as1045.3 mAh g^-1,and retains a high reversible capacity of 728.7 mAh g^-1 at 1 C after 500 cycles with a capacity decay of 0.061%per cycle.Moreover,the rate capability is also superior to cells with BN@GO or BN-P interlayers,i.e.reversible capcity of 457.9 mAh g^-1 even at 3 C.The excellent electrochemical performance is ascribed to the synergistic effect of physical barrier and chemical adsorption for dissolved polysulfides provided by the modified layer.Furhtermore,it also mitigates the polarization and promotes kinetic reactions of the cells.This work provides a concise and effective method for commercialization of lithium–sulfur batteries.