本文探索求p-级数S(p)=(sum from n=1 to ∞)(1/n^p)及交错级数J(p)=(sum from n=1 to ∞)((-1)~n/(2n-1)~p)的和的一般方法和策略,获得一些重要的结论:证明了p-级数与交错级数的和所满足的两个公式,并给出了求p-级数(sum from n=1 to ...本文探索求p-级数S(p)=(sum from n=1 to ∞)(1/n^p)及交错级数J(p)=(sum from n=1 to ∞)((-1)~n/(2n-1)~p)的和的一般方法和策略,获得一些重要的结论:证明了p-级数与交错级数的和所满足的两个公式,并给出了求p-级数(sum from n=1 to ∞)(1/n^p)的和的近似公式及误差估计式。展开更多
文摘本文探索求p-级数S(p)=(sum from n=1 to ∞)(1/n^p)及交错级数J(p)=(sum from n=1 to ∞)((-1)~n/(2n-1)~p)的和的一般方法和策略,获得一些重要的结论:证明了p-级数与交错级数的和所满足的两个公式,并给出了求p-级数(sum from n=1 to ∞)(1/n^p)的和的近似公式及误差估计式。