研究如下一类p-Laplace方程多点边值问题的数值计算方法(Φ_p(u′))′+f(t,u)=0,t∈(0,1),u′(0)=sum from 1 to (m-2)(b_iu′(ξ_i)),u(1)=sum from 1 to (m-2)(a_iu(ξ_i)).构造一类差分格式,并对该差分格式进行误差分析和数值实验....研究如下一类p-Laplace方程多点边值问题的数值计算方法(Φ_p(u′))′+f(t,u)=0,t∈(0,1),u′(0)=sum from 1 to (m-2)(b_iu′(ξ_i)),u(1)=sum from 1 to (m-2)(a_iu(ξ_i)).构造一类差分格式,并对该差分格式进行误差分析和数值实验.结果表明,所给出的计算方法有效.展开更多
Let B1 С RN be a unit ball centered at the origin. The main purpose of this paper is to discuss the critical dimension phenomenon for radial solutions of the following quasilinear elliptic problem involving critical ...Let B1 С RN be a unit ball centered at the origin. The main purpose of this paper is to discuss the critical dimension phenomenon for radial solutions of the following quasilinear elliptic problem involving critical Sobolev exponent and singular coefficients:{-div(|△u|p-2△u)=|x|s|u|p*(s)-2u+λ|x|t|u|p-2u, x∈B1, u|σB1 =0, where t, s〉-p, 2≤p〈N, p*(s)= (N+s)pN-p andλ is a real parameter. We show particularly that the above problem exists infinitely many radial solutions if the space dimension N 〉p(p-1)t+p(p2-p+1) andλ∈(0,λ1,t), whereλ1,t is the first eigenvalue of-△p with the Dirichlet boundary condition. Meanwhile, the nonexistence of sign-changing radial solutions is proved if the space dimension N ≤ (ps+p) min{1, p+t/p+s}+p2p-(p-1) min{1, p+tp+s} andλ〉0 is small.展开更多
文摘研究如下一类p-Laplace方程多点边值问题的数值计算方法(Φ_p(u′))′+f(t,u)=0,t∈(0,1),u′(0)=sum from 1 to (m-2)(b_iu′(ξ_i)),u(1)=sum from 1 to (m-2)(a_iu(ξ_i)).构造一类差分格式,并对该差分格式进行误差分析和数值实验.结果表明,所给出的计算方法有效.
基金supported by the National Natural Science Foundation of China(11326139,11326145)Tian Yuan Foundation(KJLD12067)Hubei Provincial Department of Education(Q20122504)
文摘Let B1 С RN be a unit ball centered at the origin. The main purpose of this paper is to discuss the critical dimension phenomenon for radial solutions of the following quasilinear elliptic problem involving critical Sobolev exponent and singular coefficients:{-div(|△u|p-2△u)=|x|s|u|p*(s)-2u+λ|x|t|u|p-2u, x∈B1, u|σB1 =0, where t, s〉-p, 2≤p〈N, p*(s)= (N+s)pN-p andλ is a real parameter. We show particularly that the above problem exists infinitely many radial solutions if the space dimension N 〉p(p-1)t+p(p2-p+1) andλ∈(0,λ1,t), whereλ1,t is the first eigenvalue of-△p with the Dirichlet boundary condition. Meanwhile, the nonexistence of sign-changing radial solutions is proved if the space dimension N ≤ (ps+p) min{1, p+t/p+s}+p2p-(p-1) min{1, p+tp+s} andλ〉0 is small.