Ceria(CeO2)supports,synthesized by hydrothermal treatment with different synthesis time(CeO2-X h,where X is the synthesis time in h)in the presence of the surfactant cetyltrimethyl ammonium bromide,were used as suppor...Ceria(CeO2)supports,synthesized by hydrothermal treatment with different synthesis time(CeO2-X h,where X is the synthesis time in h)in the presence of the surfactant cetyltrimethyl ammonium bromide,were used as supports for gold(Au)catalysts.The synthesis time significantly affects the morphological structure and crystallite size of CeO2,where CeO2-2 h has the smallest crystallite size with coexisting nanorods and nanoparticles.Transmission electron microscopy analysis confirms the morphology of CeO2 with distinctive(110),(100)and(111)planes,in agreement with interplanar spacings of 0.19,0,27 and 0.31,respectively.However,the morphology of CeO2-8 h and CeO2-48 h is mainly a truncated octahedral with crystal planes(111)and(100)accompanied by an interplanar spacing of 0.31 and0.27 nm,respectively.The CeO2-X h supports and those with a 3 wt%Au loading(Au/CeO2-X h)were investigated in the oxidative steam reforming of methanol at temperatures between 200 and 400℃.The Au/CeO2-2 h gave the highest methanol conversion level and hydrogen yield at a low temperature of 250℃.This superior catalytic performance results from the good interaction between the metal and support and the well-distributed Au species on the CeO2 support.展开更多
CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductive...CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.展开更多
Auto-thermal reforming of methane, combining partial oxidation and reforming of methane with CO2 or steam, was carried out with Pt/Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts, in a temperature range of 300-900℃. The auto-th...Auto-thermal reforming of methane, combining partial oxidation and reforming of methane with CO2 or steam, was carried out with Pt/Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts, in a temperature range of 300-900℃. The auto-thermal reforming occurs in two simultaneous stages, namely, total combustion of methane and reforming of the unconverted methane with steam and CO2, with the O2 conversion of 100% starting from 450℃. For combination with CO2 reforming, the Pt/CeO2 catalyst showed the lowest initial activity at 800℃, and the highest stability over 40 h on-stream. This catalyst also presented the best performance for the reaction with steam at 800℃. The higher resistance to coke formation of the catalyst supported on ceria is due to the metal-support interactions and the higher mobility of oxygen in the oxide lattice.展开更多
This paper proposes a method to model hydrocarbon reforming by coupling detailed chemical kinetics with complex computational fluid dynamics. The entire chemistry of catalyzed reactions was confined within the geometr...This paper proposes a method to model hydrocarbon reforming by coupling detailed chemical kinetics with complex computational fluid dynamics. The entire chemistry of catalyzed reactions was confined within the geometrically simple channels and modeled using the low-dimensional plug model, into which the interactive thermal control of the multi-channel reforming reactor has been implemented with a tail-gas combustor around the external surface of these catalytic channels. The geomet- rically complex flow in the tail gas combustor was simu- lated using FLUENT without involving any chemical reactions. The influences of the conditions at the reactor inlet such as the inlet gas velocity, the inlet gas composi- tion and the variety of hydrocarbons of each channel on gas conversions were investigated numerically. The impact of the tail gas combustor setup on the efficiency of the reforming reactor was also analyzed. Methane catalytic partial oxidation (CPOx) and propane steam reforming (SR) were used to illustrate the approach reported in the present work.展开更多
基金Project supported by the Ratchadaphiseksomphot Endowment Fund,Chulalongkorn University(CU-GES-60-04-63-03)the Thammasat University Research Fund under the Research University Network Initiative(8/2560)
文摘Ceria(CeO2)supports,synthesized by hydrothermal treatment with different synthesis time(CeO2-X h,where X is the synthesis time in h)in the presence of the surfactant cetyltrimethyl ammonium bromide,were used as supports for gold(Au)catalysts.The synthesis time significantly affects the morphological structure and crystallite size of CeO2,where CeO2-2 h has the smallest crystallite size with coexisting nanorods and nanoparticles.Transmission electron microscopy analysis confirms the morphology of CeO2 with distinctive(110),(100)and(111)planes,in agreement with interplanar spacings of 0.19,0,27 and 0.31,respectively.However,the morphology of CeO2-8 h and CeO2-48 h is mainly a truncated octahedral with crystal planes(111)and(100)accompanied by an interplanar spacing of 0.31 and0.27 nm,respectively.The CeO2-X h supports and those with a 3 wt%Au loading(Au/CeO2-X h)were investigated in the oxidative steam reforming of methanol at temperatures between 200 and 400℃.The Au/CeO2-2 h gave the highest methanol conversion level and hydrogen yield at a low temperature of 250℃.This superior catalytic performance results from the good interaction between the metal and support and the well-distributed Au species on the CeO2 support.
基金supported by the National Basic Research Program of China (2010CB732304)the National Natural Science Foundation of China (21177142 and 20973193)
文摘CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.
文摘Auto-thermal reforming of methane, combining partial oxidation and reforming of methane with CO2 or steam, was carried out with Pt/Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts, in a temperature range of 300-900℃. The auto-thermal reforming occurs in two simultaneous stages, namely, total combustion of methane and reforming of the unconverted methane with steam and CO2, with the O2 conversion of 100% starting from 450℃. For combination with CO2 reforming, the Pt/CeO2 catalyst showed the lowest initial activity at 800℃, and the highest stability over 40 h on-stream. This catalyst also presented the best performance for the reaction with steam at 800℃. The higher resistance to coke formation of the catalyst supported on ceria is due to the metal-support interactions and the higher mobility of oxygen in the oxide lattice.
基金supported by the National Natural Science Foundation of China(21173153)the National High Technology Research and Development Program of China(863 Program,2013AA065304)the Major Research Program of Science and Technology Department of Sichuan Province,China(2011GZ0035,2012FZ0008)~~
文摘This paper proposes a method to model hydrocarbon reforming by coupling detailed chemical kinetics with complex computational fluid dynamics. The entire chemistry of catalyzed reactions was confined within the geometrically simple channels and modeled using the low-dimensional plug model, into which the interactive thermal control of the multi-channel reforming reactor has been implemented with a tail-gas combustor around the external surface of these catalytic channels. The geomet- rically complex flow in the tail gas combustor was simu- lated using FLUENT without involving any chemical reactions. The influences of the conditions at the reactor inlet such as the inlet gas velocity, the inlet gas composi- tion and the variety of hydrocarbons of each channel on gas conversions were investigated numerically. The impact of the tail gas combustor setup on the efficiency of the reforming reactor was also analyzed. Methane catalytic partial oxidation (CPOx) and propane steam reforming (SR) were used to illustrate the approach reported in the present work.