The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustio...The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustion of coal should be considered.The risk assessment of gas control and spontaneous combustion of coal under gas drainage in a tunnel was investigated at different gas drainage rates.The distributions of the air volume along the working face,the gas management effects and the width of the oxidation zone were subjected to risk analysis.As the simulation results showed,with increasing gas drainage rate,although the safety of gas dilution by ventilation was assured,the intensifying air leakage caused the oxidation zone to move into the deeper gob and led to an increase in the width of the oxidation zone.A risk assessment method was proposed to determine a suitable gas drainage rate for the upper tunnel.The correctness of the risk assessment and the validity of the numerical modelling were confirmed by the field measurements.展开更多
A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatm...A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.展开更多
基金financially sponsored by the National Natural Science Foundation of China (Nos. 51774114 and 51404090)
文摘The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustion of coal should be considered.The risk assessment of gas control and spontaneous combustion of coal under gas drainage in a tunnel was investigated at different gas drainage rates.The distributions of the air volume along the working face,the gas management effects and the width of the oxidation zone were subjected to risk analysis.As the simulation results showed,with increasing gas drainage rate,although the safety of gas dilution by ventilation was assured,the intensifying air leakage caused the oxidation zone to move into the deeper gob and led to an increase in the width of the oxidation zone.A risk assessment method was proposed to determine a suitable gas drainage rate for the upper tunnel.The correctness of the risk assessment and the validity of the numerical modelling were confirmed by the field measurements.
基金the Key-Area Research and Development Program of Guangdong Province(2019B010936001)financially supported by the National Natural Science Foundation of China(Grant Nos.51671202 and 51301184)。
文摘A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.