期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws
1
作者 Michael Dumbser Eleuterio F.Toro 《Communications in Computational Physics》 SCIE 2011年第8期635-671,共37页
This paper is concerned with a new version of the Osher-Solomon Riemann solver and is based on a numerical integration of the path-dependent dissipation matrix.The resulting scheme is much simpler than the original on... This paper is concerned with a new version of the Osher-Solomon Riemann solver and is based on a numerical integration of the path-dependent dissipation matrix.The resulting scheme is much simpler than the original one and is applicable to general hyperbolic conservation laws,while retaining the attractive features of the original solver:the method is entropy-satisfying,differentiable and complete in the sense that it attributes a different numerical viscosity to each characteristic field,in particular to the intermediate ones,since the full eigenstructure of the underlying hyperbolic system is used.To illustrate the potential of the proposed scheme we show applications to the following hyperbolic conservation laws:Euler equations of compressible gasdynamics with ideal gas and real gas equation of state,classical and relativistic MHD equations as well as the equations of nonlinear elasticity.To the knowledge of the authors,apart from the Euler equations with ideal gas,an Osher-type scheme has never been devised before for any of these complicated PDE systems.Since our new general Riemann solver can be directly used as a building block of high order finite volume and discontinuous Galerkin schemes we also show the extension to higher order of accuracy and multiple space dimensions in the new framework of PNPM schemes on unstructured meshes recently proposed in[9]. 展开更多
关键词 Universal osher-solomon flux universal Roe flux high resolution shock-capturing finite volume schemes WENO schemes reconstructed discontinuous Galerkin methods PNPM schemes Euler equations gas dynamics ideal gas and real gas equation of state MHD equations relativistic MHD equations nonlinear elasticity
原文传递
基于WENO-Z重构的Osher-Solomon格式求解浅水波方程 被引量:3
2
作者 郑素佩 王苗苗 王令 《水动力学研究与进展(A辑)》 CSCD 北大核心 2020年第1期90-99,共10页
浅水波方程在水利、海洋和环境工程中有着非常重要的应用。该文提出一种求解浅水波方程的高分辨算法,对单元交界面处守恒变量进行三阶WENO-Z重构。空间方向上采用三阶WENO-Z重构的Osher-Solomon数值通量,时间方向上采用三阶强稳定的Rung... 浅水波方程在水利、海洋和环境工程中有着非常重要的应用。该文提出一种求解浅水波方程的高分辨算法,对单元交界面处守恒变量进行三阶WENO-Z重构。空间方向上采用三阶WENO-Z重构的Osher-Solomon数值通量,时间方向上采用三阶强稳定的Runge-Kutta方法,将新格式应用于一维和二维不同初值问题的浅水波方程数值求解中,并分析与比较了研究格式的分辨率。数值结果表明:与原格式相比,三阶WENO-Z重构的Osher-Solomon格式分辨率更高。 展开更多
关键词 osher-solomon数值通量 WENO-Z重构 有限体积法 浅水波方程
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部